Acronym | sidacadint |
Name | small discellidispenteractitriacontaditeron |
Circumradius | sqrt[17+4 sqrt(2)]/2 = 2.379961 |
Coordinates | ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (sqrt(2)-1)/2, 1/2, 1/2) & all permutations, all changes of sign |
Colonel of regiment | sibacadint |
Face vector | 1920, 6720, 6720, 2160, 132 |
Confer |
|
As abstract polytope sidacadint is isomorphic to gidacadint, thereby replacing octagons by octagrams, resp. replacing the querco by sirco, op by stop, socco by gocco, and girco by quitco, resp. replacing the gikviphado by skiviphado, quercope by sircope, gircope by quitcope, and sichado by gichado. As such sidacadint is a lieutenant.
Incidence matrix according to Dynkin symbol
x3o3x3x *b4/3x4*c . . . . . | 1920 | 2 2 1 2 | 1 2 2 2 1 1 2 2 2 | 1 1 1 2 2 2 1 1 1 2 | 1 1 1 2 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x . . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 1920 * * | 0 1 0 0 1 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * 960 * | 0 0 2 0 0 0 2 0 2 | 0 1 0 2 0 2 1 0 1 2 | 1 0 1 2 1 . . . . x | 2 | * * * 1920 | 0 0 0 1 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x3o . . . | 3 | 3 0 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 960 * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 960 * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 960 * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 0 0 | * * * * 640 * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . o . . *b4/3x | 4 | 0 0 0 4 | * * * * * 480 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 3 3 0 | * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x4*c | 8 | 0 4 0 4 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 {8} . . . x x | 4 | 0 0 2 2 | * * * * * * * * 960 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x3o3x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3o . . *b4/3x ♦ 24 | 24 0 0 24 | 8 0 0 12 0 6 0 0 0 | * * 80 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . x . x4*c ♦ 16 | 8 8 0 8 | 0 4 0 4 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x x ♦ 8 | 4 0 4 4 | 0 0 2 2 0 0 0 0 2 | * * * * * 480 * * * * | 0 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 4 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . o3x . *b4/3x4*c ♦ 24 | 0 24 0 24 | 0 0 0 0 8 6 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . o . x *b4/3x ♦ 8 | 0 0 4 8 | 0 0 0 0 0 2 0 0 4 | * * * * * * * * 240 * | 0 0 1 0 1 . . x3x x4*c ♦ 48 | 0 24 24 24 | 0 0 0 0 0 0 8 6 12 | * * * * * * * * * 80 | 0 0 0 1 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x3o3x3x . ♦ 60 | 60 60 30 0 | 20 30 30 0 20 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3o3x . *b4/3x4*c ♦ 192 | 192 192 0 192 | 64 96 0 96 64 48 0 48 0 | 16 0 8 0 24 0 0 8 0 0 | * 10 * * * x3o . x *b4/3x ♦ 48 | 48 0 24 48 | 16 0 24 24 0 12 0 0 24 | 0 8 2 0 0 12 0 0 6 0 | * * 40 * * x . x3x x4*c ♦ 96 | 48 48 48 48 | 0 24 24 24 0 0 16 12 24 | 0 0 0 8 6 12 0 0 0 2 | * * * 40 * . o3x3x *b4/3x4*c ♦ 192 | 0 192 96 192 | 0 0 0 0 64 48 64 48 96 | 0 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2025 | top of page |