Acronym | gidacadint | ||||||||||||||||||||||||||||||
Name | great discellidispenteractitriacontaditeron | ||||||||||||||||||||||||||||||
Circumradius | sqrt[17-4 sqrt(2)]/2 = 1.683979 | ||||||||||||||||||||||||||||||
Coordinates | ((1+sqrt(2))/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2, 1/2) & all permutations, all changes of sign | ||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– other uniform polyteral members:
| ||||||||||||||||||||||||||||||
Face vector | 1920, 6720, 6720, 2160, 132 | ||||||||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||||||||
External links |
![]() |
As abstract polytope gidacadint is isomorphic to sidacadint, thereby replacing octagrams by octagons, resp. replacing the sirco by querco, stop by op, gocco by socco, and quitco by girco, resp. replacing the skiviphado by gikviphado, sircope by quercope, quitcope by gircope, and gichado by sichado.
Incidence matrix according to Dynkin symbol
x3o3x3x *b4x4/3*c . . . . . | 1920 | 2 2 1 2 | 1 2 2 2 1 1 2 2 2 | 1 1 1 2 2 2 1 1 1 2 | 1 1 1 2 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x . . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 0 . . x . . | 2 | * 1920 * * | 0 1 0 0 1 0 1 1 0 | 1 0 0 1 1 0 1 1 0 1 | 1 1 0 1 1 . . . x . | 2 | * * 960 * | 0 0 2 0 0 0 2 0 2 | 0 1 0 2 0 2 1 0 1 2 | 1 0 1 2 1 . . . . x | 2 | * * * 1920 | 0 0 0 1 0 1 0 1 1 | 0 0 1 0 1 1 0 1 1 1 | 0 1 1 1 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x3o . . . | 3 | 3 0 0 0 | 640 * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 | 1 1 1 0 0 x . x . . | 4 | 2 2 0 0 | * 960 * * * * * * * | 1 0 0 1 1 0 0 0 0 0 | 1 1 0 1 0 x . . x . | 4 | 2 0 2 0 | * * 960 * * * * * * | 0 1 0 1 0 1 0 0 0 0 | 1 0 1 1 0 x . . . x | 4 | 2 0 0 2 | * * * 960 * * * * * | 0 0 1 0 1 1 0 0 0 0 | 0 1 1 1 0 . o3x . . | 3 | 0 3 0 0 | * * * * 640 * * * * | 1 0 0 0 0 0 1 1 0 0 | 1 1 0 0 1 . o . . *b4x | 4 | 0 0 0 4 | * * * * * 480 * * * | 0 0 1 0 0 0 0 1 1 0 | 0 1 1 0 1 . . x3x . | 6 | 0 3 3 0 | * * * * * * 640 * * | 0 0 0 1 0 0 1 0 0 1 | 1 0 0 1 1 . . x . x4/3*c | 8 | 0 4 0 4 | * * * * * * * 480 * | 0 0 0 0 1 0 0 1 0 1 | 0 1 0 1 1 {8/3} . . . x x | 4 | 0 0 2 2 | * * * * * * * * 960 | 0 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x3o3x . . ♦ 12 | 12 12 0 0 | 4 6 0 0 4 0 0 0 0 | 160 * * * * * * * * * | 1 1 0 0 0 x3o . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 0 0 | * 320 * * * * * * * * | 1 0 1 0 0 x3o . . *b4x ♦ 24 | 24 0 0 24 | 8 0 0 12 0 6 0 0 0 | * * 80 * * * * * * * | 0 1 1 0 0 x . x3x . ♦ 12 | 6 6 6 0 | 0 3 3 0 0 0 2 0 0 | * * * 320 * * * * * * | 1 0 0 1 0 x . x . x4/3*c ♦ 16 | 8 8 0 8 | 0 4 0 4 0 0 0 2 0 | * * * * 240 * * * * * | 0 1 0 1 0 x . . x x ♦ 8 | 4 0 4 4 | 0 0 2 2 0 0 0 0 2 | * * * * * 480 * * * * | 0 0 1 1 0 . o3x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 4 0 4 0 0 | * * * * * * 160 * * * | 1 0 0 0 1 . o3x . *b4x4/3*c ♦ 24 | 0 24 0 24 | 0 0 0 0 8 6 0 6 0 | * * * * * * * 80 * * | 0 1 0 0 1 . o . x *b4x ♦ 8 | 0 0 4 8 | 0 0 0 0 0 2 0 0 4 | * * * * * * * * 240 * | 0 0 1 0 1 . . x3x x4/3*c ♦ 48 | 0 24 24 24 | 0 0 0 0 0 0 8 6 12 | * * * * * * * * * 80 | 0 0 0 1 1 ------------------+------+--------------------+-------------------------------------+--------------------------------------+--------------- x3o3x3x . ♦ 60 | 60 60 30 0 | 20 30 30 0 20 0 20 0 0 | 5 10 0 10 0 0 5 0 0 0 | 32 * * * * x3o3x . *b4x4/3*c ♦ 192 | 192 192 0 192 | 64 96 0 96 64 48 0 48 0 | 16 0 8 0 24 0 0 8 0 0 | * 10 * * * x3o . x *b4x ♦ 48 | 48 0 24 48 | 16 0 24 24 0 12 0 0 24 | 0 8 2 0 0 12 0 0 6 0 | * * 40 * * x . x3x x4/3*c ♦ 96 | 48 48 48 48 | 0 24 24 24 0 0 16 12 24 | 0 0 0 8 6 12 0 0 0 2 | * * * 40 * . o3x3x *b4x4/3*c ♦ 192 | 0 192 96 192 | 0 0 0 0 64 48 64 48 96 | 0 0 0 0 0 0 16 8 24 8 | * * * * 10
© 2004-2025 | top of page |