Acronym gidacadint
Name great discellidispenteractitriacontaditeron
Circumradius sqrt[17-4 sqrt(2)]/2 = 1.683979
Coordinates ((1+sqrt(2))/2, (sqrt(2)-1)/2, (2 sqrt(2)-1)/2, 1/2, 1/2)   & all permutations, all changes of sign
Colonel of regiment (is itself locally convex – other uniform polyteral members:
by cells: gichado gikviphado hodip paqrit prip quitcope sircope skiviphado soccope
gidacadint 10000324040100
gibacadint 01080103200040
& others-->)
Face vector 1920, 6720, 6720, 2160, 132
Confer
general polytopal classes:
Wythoffian polytera  
External
links
polytopewiki  

As abstract polytope gidacadint is isomorphic to sidacadint, thereby replacing octagrams by octagons, resp. replacing the sirco by querco, stop by op, gocco by socco, and quitco by girco, resp. replacing the skiviphado by gikviphado, sircope by quercope, quitcope by gircope, and gichado by sichado.


Incidence matrix according to Dynkin symbol

x3o3x3x *b4x4/3*c

. . . .    .      | 1920 |    2    2   1    2 |   1   2   2   2   1   1   2   2   2 |   1   1  1   2   2   2   1  1   1  2 |  1  1  1  2  1
------------------+------+--------------------+-------------------------------------+--------------------------------------+---------------
x . . .    .      |    2 | 1920    *   *    * |   1   1   1   1   0   0   0   0   0 |   1   1  1   1   1   1   0  0   0  0 |  1  1  1  1  0
. . x .    .      |    2 |    * 1920   *    * |   0   1   0   0   1   0   1   1   0 |   1   0  0   1   1   0   1  1   0  1 |  1  1  0  1  1
. . . x    .      |    2 |    *    * 960    * |   0   0   2   0   0   0   2   0   2 |   0   1  0   2   0   2   1  0   1  2 |  1  0  1  2  1
. . . .    x      |    2 |    *    *   * 1920 |   0   0   0   1   0   1   0   1   1 |   0   0  1   0   1   1   0  1   1  1 |  0  1  1  1  1
------------------+------+--------------------+-------------------------------------+--------------------------------------+---------------
x3o . .    .      |    3 |    3    0   0    0 | 640   *   *   *   *   *   *   *   * |   1   1  1   0   0   0   0  0   0  0 |  1  1  1  0  0
x . x .    .      |    4 |    2    2   0    0 |   * 960   *   *   *   *   *   *   * |   1   0  0   1   1   0   0  0   0  0 |  1  1  0  1  0
x . . x    .      |    4 |    2    0   2    0 |   *   * 960   *   *   *   *   *   * |   0   1  0   1   0   1   0  0   0  0 |  1  0  1  1  0
x . . .    x      |    4 |    2    0   0    2 |   *   *   * 960   *   *   *   *   * |   0   0  1   0   1   1   0  0   0  0 |  0  1  1  1  0
. o3x .    .      |    3 |    0    3   0    0 |   *   *   *   * 640   *   *   *   * |   1   0  0   0   0   0   1  1   0  0 |  1  1  0  0  1
. o . . *b4x      |    4 |    0    0   0    4 |   *   *   *   *   * 480   *   *   * |   0   0  1   0   0   0   0  1   1  0 |  0  1  1  0  1
. . x3x    .      |    6 |    0    3   3    0 |   *   *   *   *   *   * 640   *   * |   0   0  0   1   0   0   1  0   0  1 |  1  0  0  1  1
. . x .    x4/3*c |    8 |    0    4   0    4 |   *   *   *   *   *   *   * 480   * |   0   0  0   0   1   0   0  1   0  1 |  0  1  0  1  1  {8/3}
. . . x    x      |    4 |    0    0   2    2 |   *   *   *   *   *   *   *   * 960 |   0   0  0   0   0   1   0  0   1  1 |  0  0  1  1  1
------------------+------+--------------------+-------------------------------------+--------------------------------------+---------------
x3o3x .    .         12 |   12   12   0    0 |   4   6   0   0   4   0   0   0   0 | 160   *  *   *   *   *   *  *   *  * |  1  1  0  0  0
x3o . x    .          6 |    6    0   3    0 |   2   0   3   0   0   0   0   0   0 |   * 320  *   *   *   *   *  *   *  * |  1  0  1  0  0
x3o . . *b4x         24 |   24    0   0   24 |   8   0   0  12   0   6   0   0   0 |   *   * 80   *   *   *   *  *   *  * |  0  1  1  0  0
x . x3x    .         12 |    6    6   6    0 |   0   3   3   0   0   0   2   0   0 |   *   *  * 320   *   *   *  *   *  * |  1  0  0  1  0
x . x .    x4/3*c    16 |    8    8   0    8 |   0   4   0   4   0   0   0   2   0 |   *   *  *   * 240   *   *  *   *  * |  0  1  0  1  0
x . . x    x          8 |    4    0   4    4 |   0   0   2   2   0   0   0   0   2 |   *   *  *   *   * 480   *  *   *  * |  0  0  1  1  0
. o3x3x    .         12 |    0   12   6    0 |   0   0   0   0   4   0   4   0   0 |   *   *  *   *   *   * 160  *   *  * |  1  0  0  0  1
. o3x . *b4x4/3*c    24 |    0   24   0   24 |   0   0   0   0   8   6   0   6   0 |   *   *  *   *   *   *   * 80   *  * |  0  1  0  0  1
. o . x *b4x          8 |    0    0   4    8 |   0   0   0   0   0   2   0   0   4 |   *   *  *   *   *   *   *  * 240  * |  0  0  1  0  1
. . x3x    x4/3*c    48 |    0   24  24   24 |   0   0   0   0   0   0   8   6  12 |   *   *  *   *   *   *   *  *   * 80 |  0  0  0  1  1
------------------+------+--------------------+-------------------------------------+--------------------------------------+---------------
x3o3x3x    .         60 |   60   60  30    0 |  20  30  30   0  20   0  20   0   0 |   5  10  0  10   0   0   5  0   0  0 | 32  *  *  *  *
x3o3x . *b4x4/3*c   192 |  192  192   0  192 |  64  96   0  96  64  48   0  48   0 |  16   0  8   0  24   0   0  8   0  0 |  * 10  *  *  *
x3o . x *b4x         48 |   48    0  24   48 |  16   0  24  24   0  12   0   0  24 |   0   8  2   0   0  12   0  0   6  0 |  *  * 40  *  *
x . x3x    x4/3*c    96 |   48   48  48   48 |   0  24  24  24   0   0  16  12  24 |   0   0  0   8   6  12   0  0   0  2 |  *  *  * 40  *
. o3x3x *b4x4/3*c   192 |    0  192  96  192 |   0   0   0   0  64  48  64  48  96 |   0   0  0   0   0   0  16  8  24  8 |  *  *  *  * 10

© 2004-2025
top of page