Acronym gidtiddip Name great-ditrigonary-icosidodecahedron prism Cross sections ` ©` Circumradius 1 Colonel of regiment sidtiddip Dihedral angles at {5} between gidtid and pip:   90° at {3} between gidtid and trip:   90° at {4} between pip and trip:   arccos(sqrt[(5-2 sqrt(5))/15]) = 79.187683° Externallinks

As abstract polytope gidtiddip is isomorphic to sidtiddip, thereby replacing pentagons by pentagrams, resp. replacing pip by stip and gidtid by sidtid.

Incidence matrix according to Dynkin symbol

```x x5o3o3/2*b

. . . .      | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x . . .      |  2 | 20   * |  6  0  0 |  3  3 0
. x . .      |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x . .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5o .      |  5 |  0   5 |  * 24  * |  1  0 1
. x . o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5o .      ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x . o3/2*b ♦  6 |  3   6 |  3  0  2 |  * 20 *
. x5o3o3/2*b ♦ 20 |  0  60 |  0 12 20 |  *  * 2
```

```x x5o3/2o3*b

. . .   .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x . .   .    |  2 | 20   * |  6  0  0 |  3  3 0
. x .   .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x .   .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5o   .    |  5 |  0   5 |  * 24  * |  1  0 1
. x .   o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5o   .    ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x .   o3*b ♦  6 |  3   6 |  3  0  2 |  * 20 *
. x5o3/2o3*b ♦ 20 |  0  60 |  0 12 20 |  *  * 2
```

```x x5/4o3o3*b

. .   . .    | 40 |  1   6 |  6  3  3 |  3  3 1
-------------+----+--------+----------+--------
x .   . .    |  2 | 20   * |  6  0  0 |  3  3 0
. x   . .    |  2 |  * 120 |  1  1  1 |  1  1 1
-------------+----+--------+----------+--------
x x   . .    |  4 |  2   2 | 60  *  * |  1  1 0
. x5/4o .    |  5 |  0   5 |  * 24  * |  1  0 1
. x   . o3*b |  3 |  0   3 |  *  * 40 |  0  1 1
-------------+----+--------+----------+--------
x x5/4o .    ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x   . o3*b ♦  6 |  3   6 |  3  0  2 |  * 20 *
. x5/4o3o3*b ♦ 20 |  0  60 |  0 12 20 |  *  * 2
```

```x x5/4o3/2o3/2*b

. .   .   .      | 40 |  1   6 |  6  3  3 |  3  3 1
-----------------+----+--------+----------+--------
x .   .   .      |  2 | 20   * |  6  0  0 |  3  3 0
. x   .   .      |  2 |  * 120 |  1  1  1 |  1  1 1
-----------------+----+--------+----------+--------
x x   .   .      |  4 |  2   2 | 60  *  * |  1  1 0
. x5/4o   .      |  5 |  0   5 |  * 24  * |  1  0 1
. x   .   o3/2*b |  3 |  0   3 |  *  * 40 |  0  1 1
-----------------+----+--------+----------+--------
x x5/4o   .      ♦ 10 |  5  10 |  5  2  0 | 12  * *
x x   .   o3/2*b ♦  6 |  3   6 |  3  0  2 |  * 20 *
. x5/4o3/2o3/2*b ♦ 20 |  0  60 |  0 12 20 |  *  * 2
```