Acronym tiscsrix Name tristratic icosidodecahedron-first cap of small rhombihexacosachoron ` ©` Circumradius sqrt[19+8 sqrt(5)] = 6.073594 Lace cityin approx. ASCII-art ``` x5x u5x o5f x5o x5F x5f u5o x5U x5o with: x5f F=ff=f+x, X=f+2x, U=2f, o5f x5F A=3f, u5F B=2x+2f, C=x+2f, u5x D=x+3f X5x x5x Xo5oX x5X x5u F5u f5o F5x f5x o5x U5x o5u f5x o5x F5x f5o x5u x5x ``` ``` x3o f3x o3F f3f F3o x3f o3x x3x u3f X3o x3U C3o f3U U3f o3C U3x o3X f3u x3x o3x F3x C3o f3X U3F f3C C3f F3U X3f o3C x3F x3o C3U D3F x3x F3x U3u AF3xX x3B C3F x3D # F3D # U3C D3x F3C B3x xX3AF u3U x3F x3x ``` Dihedral angles at {4} between co and pip:   arccos(-sqrt[(5+2 sqrt(5))/10]) = 166.717474° at {4} between pip and tricu:   arccos(-sqrt[(5+2 sqrt(5))/10]) = 166.717474° at {3} between co and co:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between co and tricu:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {5} between id and pip:   162° at {5} between pero and pip:   162° at {3} between co and id:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between co and pero:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between pero and tricu: arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {6} between grid and tricu:   arccos(sqrt(5/8)) = 37.761244° at {10} between grid and pero:   36° ... Confer uniform relative: srix   related segmentochora: id || ti   related CRFs: ti || (x,f)-srid || grid

Incidence matrix according to Dynkin symbol

```oxxx3xxox5oofx&#xt   → height(1,2) = height(2,3) = (sqrt(5)-1)/4 = 0.309017
height(3,4) = 1/2
(id || pseudo ti || pseudo (x,f)-srid || grid)

o...3o...5o...     | 30  *  *   * |  4  2  0  0   0  0   0  0  0  0 |  2  2  1  4  0  0  0  0  0  0  0  0  0  0 | 1  2  2  0  0  0 0
.o..3.o..5.o..     |  * 60  *   * |  0  1  1  2   2  0   0  0  0  0 |  0  0  1  2  1  2  2  1  0  0  0  0  0  0 | 0  2  1  1  1  0 0
..o.3..o.5..o.     |  *  * 60   * |  0  0  0  0   2  2   2  0  0  0 |  0  0  0  0  0  2  1  2  1  2  1  0  0  0 | 0  1  0  2  1  1 0
...o3...o5...o     |  *  *  * 120 |  0  0  0  0   0  0   1  1  1  1 |  0  0  0  0  0  0  0  1  0  1  1  1  1  1 | 0  0  0  1  1  1 1
-------------------+--------------+---------------------------------+-------------------------------------------+-------------------
.... x... ....     |  2  0  0   0 | 60  *  *  *   *  *   *  *  *  * |  1  1  0  1  0  0  0  0  0  0  0  0  0  0 | 1  1  1  0  0  0 0
oo..3oo..5oo..&#x  |  1  1  0   0 |  * 60  *  *   *  *   *  *  *  * |  0  0  1  2  0  0  0  0  0  0  0  0  0  0 | 0  2  1  0  0  0 0
.x.. .... ....     |  0  2  0   0 |  *  * 30  *   *  *   *  *  *  * |  0  0  1  0  0  2  0  0  0  0  0  0  0  0 | 0  2  0  1  0  0 0
.... .x.. ....     |  0  2  0   0 |  *  *  * 60   *  *   *  *  *  * |  0  0  0  1  1  0  1  0  0  0  0  0  0  0 | 0  1  1  0  1  0 0
.oo.3.oo.5.oo.&#x  |  0  1  1   0 |  *  *  *  * 120  *   *  *  *  * |  0  0  0  0  0  1  1  1  0  0  0  0  0  0 | 0  1  0  1  1  0 0
..x. .... ....     |  0  0  2   0 |  *  *  *  *   * 60   *  *  *  * |  0  0  0  0  0  1  0  0  1  1  0  0  0  0 | 0  1  0  1  0  1 0
..oo3..oo5..oo&#x  |  0  0  1   1 |  *  *  *  *   *  * 120  *  *  * |  0  0  0  0  0  0  0  1  0  1  1  0  0  0 | 0  0  0  1  1  1 0
...x .... ....     |  0  0  0   2 |  *  *  *  *   *  *   * 60  *  * |  0  0  0  0  0  0  0  0  0  1  0  1  1  0 | 0  0  0  1  0  1 1
.... ...x ....     |  0  0  0   2 |  *  *  *  *   *  *   *  * 60  * |  0  0  0  0  0  0  0  0  0  0  1  1  0  1 | 0  0  0  0  1  1 1
.... .... ...x     |  0  0  0   2 |  *  *  *  *   *  *   *  *  * 60 |  0  0  0  0  0  0  0  1  0  0  0  0  1  1 | 0  0  0  1  1  0 1
-------------------+--------------+---------------------------------+-------------------------------------------+-------------------
o...3x... ....     |  3  0  0   0 |  3  0  0  0   0  0   0  0  0  0 | 20  *  *  *  *  *  *  *  *  *  *  *  *  * | 1  1  0  0  0  0 0
.... x...5o...     |  5  0  0   0 |  5  0  0  0   0  0   0  0  0  0 |  * 12  *  *  *  *  *  *  *  *  *  *  *  * | 1  0  1  0  0  0 0
ox.. .... ....&#x  |  1  2  0   0 |  0  2  1  0   0  0   0  0  0  0 |  *  * 30  *  *  *  *  *  *  *  *  *  *  * | 0  2  0  0  0  0 0
.... xx.. ....&#x  |  2  2  0   0 |  1  2  0  1   0  0   0  0  0  0 |  *  *  * 60  *  *  *  *  *  *  *  *  *  * | 0  1  1  0  0  0 0
.... .x..5.o..     |  0  5  0   0 |  0  0  0  5   0  0   0  0  0  0 |  *  *  *  * 12  *  *  *  *  *  *  *  *  * | 0  0  1  0  1  0 0
.xx. .... ....&#x  |  0  2  2   0 |  0  0  1  0   2  1   0  0  0  0 |  *  *  *  *  * 60  *  *  *  *  *  *  *  * | 0  1  0  1  0  0 0
.... .xo. ....&#x  |  0  2  1   0 |  0  0  0  1   2  0   0  0  0  0 |  *  *  *  *  *  * 60  *  *  *  *  *  *  * | 0  1  0  0  1  0 0
.... .... .ofx&#xt |  0  1  2   2 |  0  0  0  0   2  0   2  0  0  1 |  *  *  *  *  *  *  * 60  *  *  *  *  *  * | 0  0  0  1  1  0 0
..x.3..o. ....     |  0  0  3   0 |  0  0  0  0   0  3   0  0  0  0 |  *  *  *  *  *  *  *  * 20  *  *  *  *  * | 0  1  0  0  0  1 0
..xx .... ....&#x  |  0  0  2   2 |  0  0  0  0   0  1   2  1  0  0 |  *  *  *  *  *  *  *  *  * 60  *  *  *  * | 0  0  0  1  0  1 0
.... ..ox ....&#x  |  0  0  1   2 |  0  0  0  0   0  0   2  0  1  0 |  *  *  *  *  *  *  *  *  *  * 60  *  *  * | 0  0  0  0  1  1 0
...x3...x ....     |  0  0  0   6 |  0  0  0  0   0  0   0  3  3  0 |  *  *  *  *  *  *  *  *  *  *  * 20  *  * | 0  0  0  0  0  1 1
...x .... ...x     |  0  0  0   4 |  0  0  0  0   0  0   0  2  0  2 |  *  *  *  *  *  *  *  *  *  *  *  * 30  * | 0  0  0  1  0  0 1
.... ...x5...x     |  0  0  0  10 |  0  0  0  0   0  0   0  0  5  5 |  *  *  *  *  *  *  *  *  *  *  *  *  * 12 | 0  0  0  0  1  0 1
-------------------+--------------+---------------------------------+-------------------------------------------+-------------------
o...3x...5o...     ♦ 30  0  0   0 | 60  0  0  0   0  0   0  0  0  0 | 20 12  0  0  0  0  0  0  0  0  0  0  0  0 | 1  *  *  *  *  * *
oxx.3xxo. ....&#xt ♦  3  6  3   0 |  3  6  3  3   6  3   0  0  0  0 |  1  0  3  3  0  3  3  0  1  0  0  0  0  0 | * 20  *  *  *  * *
.... xx..5oo..&#x  ♦  5  5  0   0 |  5  5  0  5   0  0   0  0  0  0 |  0  1  0  5  1  0  0  0  0  0  0  0  0  0 | *  * 12  *  *  * *
.xxx .... .ofx&#xt ♦  0  2  4   4 |  0  0  1  0   4  2   4  2  0  2 |  0  0  0  0  0  2  0  2  0  2  0  0  1  0 | *  *  * 30  *  * *
.... .xox5.ofx&#xt ♦  0  5  5  10 |  0  0  0  5  10  0  10  0  5  5 |  0  0  0  0  1  0  5  5  0  0  5  0  0  1 | *  *  *  * 12  * *
..xx3..ox ....&#x  ♦  0  0  3   6 |  0  0  0  0   0  3   6  3  3  0 |  0  0  0  0  0  0  0  0  1  3  3  1  0  0 | *  *  *  *  * 20 *
...x3...x5...x     ♦  0  0  0 120 |  0  0  0  0   0  0   0 60 60 60 |  0  0  0  0  0  0  0  0  0  0  0 20 30 12 | *  *  *  *  *  * 1
```