| Acronym | sirhin | ||||||||||||||||||||||||||||||||||||
| Name | small rhombihemipenteract, cantellated demipenteract, runcic penteract | ||||||||||||||||||||||||||||||||||||
| Circumradius | sqrt(21/8) = 1.620185 | ||||||||||||||||||||||||||||||||||||
| Lace city in approx. ASCII-art | 
 | ||||||||||||||||||||||||||||||||||||
| 
    o3o3x   o3x3x   x3x3o   x3o3o    		-- x3o3o *b3x (rit)
                                     
                                     
                                     
                                     
o3x3o   o3u3o   x3x3x   o3u3o   o3x3x		-- x3x3o *b3o (gyro thex)
                                     
                                     
                                     
                                     
    x3x3o   u3o3x   x3o3u   o3x3x    		-- o3x3x *b3o (thex)
                                     
                                     
                                     
                                     
        x3o3x uo3oo3ou- x3o3x        		-- o3o3x *b3x (gyro rit)
                &#zx                 
            \       \       \       \       \
             \       \       \       \       +-- o3x3o3o (rap)
              \       \       \       +--------- o3x3x3o (deca)
               \       \       +---------------- x3o3x3x (prip)
                \       +----------------------- uo3oo3ou3xo&#zx
                 +------------------------------ x3o3x3o (srip)
 | |||||||||||||||||||||||||||||||||||||
| Coordinates | (3, 3, 1, 1, 1)/sqrt(8) & all permutations, all even changes of sign | ||||||||||||||||||||||||||||||||||||
| General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||
| Colonel of regiment | (is itself locally convex
– uniform polyteral members: 
 | ||||||||||||||||||||||||||||||||||||
| Dihedral angles (at margins) | |||||||||||||||||||||||||||||||||||||
| Face vector | 160, 720, 880, 360, 42 | ||||||||||||||||||||||||||||||||||||
| Confer | 
 | ||||||||||||||||||||||||||||||||||||
| External links |     | 
As abstract polytope sirhin is isomorphic to its (Grünbaumian) isomorph, thereby replacing some prograde by retrograde triangles, co by 2thah, resp. rit by 2tho+24{4} and srip by pinnip+5 2thah.
Incidence matrix according to Dynkin symbol
   x           
  3 \          
     o---x---o 
  3 /  3   3   
   o           
x3o3o *b3x3o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 -------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 -------------+-----+---------+-----------------+----------------+--------- x3o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 -------------+-----+---------+-----------------+----------------+--------- x3o3o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3o . *b3x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3o *b3x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3x3o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 -------------+-----+---------+-----------------+----------------+--------- x3o3o *b3x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3o . *b3x3o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3o *b3x3o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
   x           
  3 \          
     o---x---o 
  3 /  3  3/2  
   o           
x3o3o *b3x3/2o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 ---------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3/2o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3o . *b3x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3/2o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3o *b3x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3x3/2o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3o *b3x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3o . *b3x3/2o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3o *b3x3/2o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
   x           
  3 \          
     o---x---o 
3/2 /  3   3   
   o           
x3o3/2o *b3x3o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 ---------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3/2o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3o . *b3x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3/2o *b3x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3x3o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3/2o *b3x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3o . *b3x3o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3/2o *b3x3o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
   x           
  3 \          
     o---x---o 
3/2 /  3  3/2  
   o           
x3o3/2o *b3x/23o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 -----------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 -----------------+-----+---------+-----------------+----------------+--------- x3o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3/2o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 -----------------+-----+---------+-----------------+----------------+--------- x3o3/2o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3o . *b3x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3/2o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3/2o *b3x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3x3/2o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 -----------------+-----+---------+-----------------+----------------+--------- x3o3/2o *b3x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3o . *b3x3/2o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3/2o *b3x3/2o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
   x           
3/2 \          
     o---x---o 
  3 / 3/2  3   
   o           
x3/2o3o *b3/2x3o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 -----------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 -----------------+-----+---------+-----------------+----------------+--------- x3/2o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3/2x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 -----------------+-----+---------+-----------------+----------------+--------- x3/2o3o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3/2o . *b3/2x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3o *b3/2x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3/2x3o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 -----------------+-----+---------+-----------------+----------------+--------- x3/2o3o *b3/2x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3/2o . *b3/2x3o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3o *b3/2x3o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
   x           
3/2 \          
     o---x---o 
  3 / 3/2 3/2  
   o           
x3/2o3o *b3/2x3/2o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 -------------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 -------------------+-----+---------+-----------------+----------------+--------- x3/2o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3/2x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3/2o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 -------------------+-----+---------+-----------------+----------------+--------- x3/2o3o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3/2o . *b3/2x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3/2o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3o *b3/2x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3/2x3/2o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 -------------------+-----+---------+-----------------+----------------+--------- x3/2o3o *b3/2x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3/2o . *b3/2x3/2o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3o *b3/2x3/2o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
   x           
3/2 \          
     o---x---o 
3/2 / 3/2  3   
   o           
x3/2o3/2o *b3/2x3o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 -------------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 -------------------+-----+---------+-----------------+----------------+--------- x3/2o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3/2x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 -------------------+-----+---------+-----------------+----------------+--------- x3/2o3/2o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3/2o . *b3/2x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3/2o *b3/2x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3/2x3o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 -------------------+-----+---------+-----------------+----------------+--------- x3/2o3/2o *b3/2x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3/2o . *b3/2x3o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3/2o *b3/2x3o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
   x           
3/2 \          
     o---x---o 
3/2 / 3/2 3/2  
   o           
x3/2o3/2o *b3/2x/23o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 ---------------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 ---------------------+-----+---------+-----------------+----------------+--------- x3/2o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3/2x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3/2o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 ---------------------+-----+---------+-----------------+----------------+--------- x3/2o3/2o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3/2o . *b3/2x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3/2o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3/2o *b3/2x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3/2x3/2o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 ---------------------+-----+---------+-----------------+----------------+--------- x3/2o3/2o *b3/2x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3/2o . *b3/2x3/2o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3/2o *b3/2x3/2o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
o3x3o3o4s
demi( . . . . . ) | 160 |   6   3 |   3   6   6   3 |  3  2  3  1  6 |  1  2  3
------------------+-----+---------+-----------------+----------------+---------
demi( . x . . . ) |   2 | 480   * |   1   2   1   0 |  2  1  1  0  2 |  1  1  2
      . . . o4s   |   2 |   * 240 |   0   0   2   2 |  0  0  1  1  4 |  0  2  2
------------------+-----+---------+-----------------+----------------+---------
demi( o3x . . . ) |   3 |   3   0 | 160   *   *   * |  2  0  1  0  0 |  1  0  2
demi( . x3o . . ) |   3 |   3   0 |   * 320   *   * |  1  1  0  0  1 |  1  1  1
      . x 2 o4s   |   4 |   2   2 |   *   * 240   * |  0  0  1  0  2 |  0  1  2
sefa( . . o3o4s ) |   3 |   0   3 |   *   *   * 160 |  0  0  0  1  2 |  0  2  1
------------------+-----+---------+-----------------+----------------+---------
demi( o3x3o . . ) ♦   6 |  12   0 |   4   4   0   0 | 80  *  *  *  * |  1  0  1
demi( . x3o3o . ) ♦   4 |   6   0 |   0   4   0   0 |  * 80  *  *  * |  1  1  0
      o3x 2 o4s   ♦   6 |   6   3 |   2   0   3   0 |  *  * 80  *  * |  0  0  2
      . . o3o4s   ♦   4 |   0   6 |   0   0   0   4 |  *  *  * 40  * |  0  2  0
sefa( . x3o3o4s ) ♦  12 |  12  12 |   0   4   6   4 |  *  *  *  * 80 |  0  1  1
------------------+-----+---------+-----------------+----------------+---------
demi( o3x3o3o . ) ♦  10 |  30   0 |  10  20   0   0 |  5  5  0  0  0 | 16  *  *
      . x3o3o4s   ♦  32 |  48  48 |   0  32  24  32 |  0  8  0  8  8 |  * 10  *
sefa( o3x3o3o4s ) ♦  30 |  60  30 |  20  20  30  10 |  5  0 10  0  5 |  *  * 16
starting figure: o3x3o3o4x
xxoo3oxxo3ooxx *b3xoox&#xt → all heights = 1/sqrt(2) = 0.707107 (rit || gyro thex || thex || gyro rit) o...3o...3o... *b3o... & | 64 * | 3 3 3 0 0 0 | 3 3 3 3 3 3 0 0 0 0 | 1 3 1 3 3 1 3 0 0 0 | 1 1 3 1 .o..3.o..3.o.. *b3.o.. & | * 96 | 0 0 2 1 4 2 | 0 0 0 2 1 1 2 2 3 4 | 0 0 0 6 1 2 2 1 1 2 | 0 2 3 1 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x... .... .... .... & | 2 0 | 96 * * * * * | 2 1 0 1 0 0 0 0 0 0 | 1 2 0 2 1 0 0 0 0 0 | 1 1 2 0 .... .... .... x... & | 2 0 | * 96 * * * * | 0 1 2 0 0 1 0 0 0 0 | 0 2 1 0 1 0 2 0 0 0 | 1 0 2 1 oo..3oo..3oo.. *b3oo..&#x & | 1 1 | * * 192 * * * | 0 0 0 1 2 1 0 0 0 0 | 0 0 0 2 1 1 2 0 0 0 | 0 1 2 1 .x.. .... .... .... & | 0 2 | * * * 48 * * | 0 0 0 2 0 0 0 0 2 0 | 0 0 0 4 1 0 0 0 1 0 | 0 2 2 0 .... .x.. .... .... & | 0 2 | * * * * 192 * | 0 0 0 0 1 0 1 1 0 1 | 0 0 0 2 0 1 1 1 0 1 | 0 1 2 1 .oo.3.oo.3.oo. *b3.oo.&#x | 0 2 | * * * * * 96 | 0 0 0 0 0 0 0 0 2 2 | 0 0 0 4 0 0 0 0 1 1 | 0 2 2 0 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x...3o... .... .... & | 3 0 | 3 0 0 0 0 0 | 64 * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 | 1 1 1 0 x... .... .... x... & | 4 0 | 2 2 0 0 0 0 | * 48 * * * * * * * * | 0 2 0 0 1 0 0 0 0 0 | 1 0 2 0 .... o... .... *b3x... & | 3 0 | 0 3 0 0 0 0 | * * 64 * * * * * * * | 0 1 1 0 0 0 1 0 0 0 | 1 0 1 1 xx.. .... .... ....&#x & | 2 2 | 1 0 2 1 0 0 | * * * 96 * * * * * * | 0 0 0 2 1 0 0 0 0 0 | 0 1 2 0 .... ox.. .... ....&#x & | 1 2 | 0 0 2 0 1 0 | * * * * 192 * * * * * | 0 0 0 1 0 1 1 0 0 0 | 0 1 1 1 .... .... .... xo..&#x & | 2 1 | 0 1 2 0 0 0 | * * * * * 96 * * * * | 0 0 0 0 1 0 2 0 0 0 | 0 0 2 1 .... .x..3.o.. .... & | 0 3 | 0 0 0 0 3 0 | * * * * * * 64 * * * | 0 0 0 1 0 1 0 1 0 0 | 0 1 1 1 .... .x.. .... *b3.o.. & | 0 3 | 0 0 0 0 3 0 | * * * * * * * 64 * * | 0 0 0 0 0 0 1 1 0 1 | 0 0 2 1 .xo. .... .... ....&#x & | 0 3 | 0 0 0 1 0 2 | * * * * * * * * 96 * | 0 0 0 2 0 0 0 0 1 0 | 0 2 1 0 .... .xx. .... ....&#x | 0 4 | 0 0 0 0 2 2 | * * * * * * * * * 96 | 0 0 0 2 0 0 0 0 0 1 | 0 1 2 0 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x...3o...3o... .... & ♦ 4 0 | 6 0 0 0 0 0 | 4 0 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * | 1 1 0 0 x...3o... .... *b3x... & ♦ 12 0 | 12 12 0 0 0 0 | 4 6 4 0 0 0 0 0 0 0 | * 16 * * * * * * * * | 1 0 1 0 .... o...3o... *b3x... & ♦ 4 0 | 0 6 0 0 0 0 | 0 0 4 0 0 0 0 0 0 0 | * * 16 * * * * * * * | 1 0 0 1 xxo.3oxx. .... ....&#xt & ♦ 3 9 | 3 0 6 3 6 6 | 1 0 0 3 3 0 1 0 3 3 | * * * 64 * * * * * * | 0 1 1 0 xx.. .... .... xo..&#x & ♦ 4 2 | 2 2 4 1 0 0 | 0 1 0 2 0 2 0 0 0 0 | * * * * 48 * * * * * | 0 0 2 0 .... ox..3oo.. ....&#x & ♦ 1 3 | 0 0 3 0 3 0 | 0 0 0 0 3 0 1 0 0 0 | * * * * * 64 * * * * | 0 1 0 1 .... ox.. .... *b3xo..&#x & ♦ 3 3 | 0 3 6 0 3 0 | 0 0 1 0 3 3 0 1 0 0 | * * * * * * 64 * * * | 0 0 1 1 .... .x..3.o.. *b3.o.. & ♦ 0 6 | 0 0 0 0 12 0 | 0 0 0 0 0 0 4 4 0 0 | * * * * * * * 16 * * | 0 0 1 1 .xo. .... .ox. ....&#x ♦ 0 4 | 0 0 0 2 0 4 | 0 0 0 0 0 0 0 0 4 0 | * * * * * * * * 24 * | 0 2 0 0 .... .xx. .... *b3.oo.&#x ♦ 0 6 | 0 0 0 0 6 3 | 0 0 0 0 0 0 0 2 0 3 | * * * * * * * * * 32 | 0 0 2 0 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x...3o...3o... *b3x... & ♦ 32 0 | 48 48 0 0 0 0 | 32 24 32 0 0 0 0 0 0 0 | 8 8 8 0 0 0 0 0 0 0 | 2 * * * xxoo3oxxo3ooxx ....&#xt ♦ 8 24 | 12 0 24 12 24 24 | 8 0 0 12 24 0 8 0 24 12 | 2 0 0 8 0 8 0 0 6 0 | * 8 * * xxo.3oxx. .... *b3xoo.&#xt & ♦ 12 18 | 12 12 24 6 24 12 | 4 6 4 12 12 12 4 8 6 12 | 0 1 0 4 6 0 4 1 0 4 | * * 16 * .... ox..3oo.. *b3xo..&#x & ♦ 4 6 | 0 6 12 0 12 0 | 0 0 4 0 12 6 4 4 0 0 | 0 0 1 0 0 4 4 1 0 0 | * * * 16
| © 2004-2025 | top of page |