Acronym trapedip, K-4.34 Name triangle - pentagon duoprism,pentagon - pip wedge ` ©` Circumradius sqrt[(25+3 sqrt(5))/30] = 1.028076 Volume sqrt[75+30 sqrt(5)]/16 = 0.744989 General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles at {3} between trip and trip:   108° at {4} between pip and trip:   90° at {5} between pip and pip:   60° Confer general duoprisms: n,m-dip   3,n-dip   5,n-dip   general polytopal classes: segmentochora   bistratic lace towers Externallinks

As abstract polytope trapedip is isomorphic to tistadip, thereby replacing pentagons by pentagrams, resp. pip by stip.

Incidence matrix according to Dynkin symbol

```x3o x5o

. . . . | 15 |  2  2 | 1  4 1 | 2 2
--------+----+-------+--------+----
x . . . |  2 | 15  * | 1  2 0 | 2 1
. . x . |  2 |  * 15 | 0  2 1 | 1 2
--------+----+-------+--------+----
x3o . . |  3 |  3  0 | 5  * * | 2 0
x . x . |  4 |  2  2 | * 15 * | 1 1
. . x5o |  5 |  0  5 | *  * 3 | 0 2
--------+----+-------+--------+----
x3o x . ♦  6 |  6  3 | 2  3 0 | 5 *
x . x5o ♦ 10 |  5 10 | 0  5 2 | * 3
```

```x3o x5/4o

. . .   . | 15 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x . .   . |  2 | 15  * | 1  2 0 | 2 1
. . x   . |  2 |  * 15 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3o .   . |  3 |  3  0 | 5  * * | 2 0
x . x   . |  4 |  2  2 | * 15 * | 1 1
. . x5/4o |  5 |  0  5 | *  * 3 | 0 2
----------+----+-------+--------+----
x3o x   . ♦  6 |  6  3 | 2  3 0 | 5 *
x . x5/4o ♦ 10 |  5 10 | 0  5 2 | * 3
```

```x3/2o x5o

.   . . . | 15 |  2  2 | 1  4 1 | 2 2
----------+----+-------+--------+----
x   . . . |  2 | 15  * | 1  2 0 | 2 1
.   . x . |  2 |  * 15 | 0  2 1 | 1 2
----------+----+-------+--------+----
x3/2o . . |  3 |  3  0 | 5  * * | 2 0
x   . x . |  4 |  2  2 | * 15 * | 1 1
.   . x5o |  5 |  0  5 | *  * 3 | 0 2
----------+----+-------+--------+----
x3/2o x . ♦  6 |  6  3 | 2  3 0 | 5 *
x   . x5o ♦ 10 |  5 10 | 0  5 2 | * 3
```

```x3/2o x5/4o

.   . .   . | 15 |  2  2 | 1  4 1 | 2 2
------------+----+-------+--------+----
x   . .   . |  2 | 15  * | 1  2 0 | 2 1
.   . x   . |  2 |  * 15 | 0  2 1 | 1 2
------------+----+-------+--------+----
x3/2o .   . |  3 |  3  0 | 5  * * | 2 0
x   . x   . |  4 |  2  2 | * 15 * | 1 1
.   . x5/4o |  5 |  0  5 | *  * 3 | 0 2
------------+----+-------+--------+----
x3/2o x   . ♦  6 |  6  3 | 2  3 0 | 5 *
x   . x5/4o ♦ 10 |  5 10 | 0  5 2 | * 3
```

```ox xx5oo&#x    → height = sqrt(3)/2 = 0.866025
({5} || pip)

o. o.5o.    | 5  * | 2  2 0  0 | 1 1  4 0 0 | 2 2 0
.o .o5.o    | * 10 | 0  1 1  2 | 0 1  2 2 1 | 2 1 1
------------+------+-----------+------------+------
.. x. ..    | 2  0 | 5  * *  * | 1 0  2 0 0 | 1 2 0
oo oo5oo&#x | 1  1 | * 10 *  * | 0 1  2 0 0 | 2 1 0
.x .. ..    | 0  2 | *  * 5  * | 0 1  0 2 0 | 2 0 1
.. .x ..    | 0  2 | *  * * 10 | 0 0  1 1 1 | 1 1 1
------------+------+-----------+------------+------
.. x.5o.    | 5  0 | 5  0 0  0 | 1 *  * * * | 0 2 0
ox .. ..&#x | 1  2 | 0  2 1  0 | * 5  * * * | 2 0 0
.. xx ..&#x | 2  2 | 1  2 0  1 | * * 10 * * | 1 1 0
.x .x ..    | 0  4 | 0  0 2  2 | * *  * 5 * | 1 0 1
.. .x5.o    | 0  5 | 0  0 0  5 | * *  * * 2 | 0 1 1
------------+------+-----------+------------+------
ox xx ..&#x ♦ 2  4 | 1  4 2  2 | 0 2  2 1 0 | 5 * *
.. xx5oo&#x ♦ 5  5 | 5  5 0  5 | 1 0  5 0 1 | * 2 *
.x .x5.o    ♦ 0 10 | 0  0 5 10 | 0 0  0 5 2 | * * 1
```

```ofx xxx3ooo&#xt   → height(1,2) = sqrt[(5-sqrt(5))/8] = 0.587785
height(2,3) = sqrt[(5+sqrt(5))/8] = 0.951057

o.. o..3o..     | 3 * * | 2 2 0 0 0 0 | 1 1 4 0 0 0 0 | 2 2 0 0
.o. .o.3.o.     | * 6 * | 0 1 2 1 0 0 | 0 1 2 1 2 0 0 | 2 1 1 0
..o ..o3..o     | * * 6 | 0 0 0 1 1 2 | 0 1 0 0 2 2 1 | 2 0 1 1
----------------+-------+-------------+---------------+--------
... x.. ...     | 2 0 0 | 3 * * * * * | 1 0 2 0 0 0 0 | 1 2 0 0
oo. oo.3oo.&#x  | 1 1 0 | * 6 * * * * | 0 1 2 0 0 0 0 | 2 1 0 0
... .x. ...     | 0 2 0 | * * 6 * * * | 0 0 1 1 1 0 0 | 1 1 1 0
.oo .oo3.oo&#x  | 0 1 1 | * * * 6 * * | 0 1 0 0 2 0 0 | 2 0 1 0
..x ... ...     | 0 0 2 | * * * * 3 * | 0 1 0 0 0 2 0 | 2 0 0 1
... ..x ...     | 0 0 2 | * * * * * 6 | 0 0 0 0 1 1 1 | 1 0 1 1
----------------+-------+-------------+---------------+--------
... x..3o..     | 3 0 0 | 3 0 0 0 0 0 | 1 * * * * * * | 0 2 0 0
ofx ... ...&#xt | 1 2 2 | 0 2 0 2 1 0 | * 3 * * * * * | 2 0 0 0
... xx. ...&#x  | 2 2 0 | 1 2 1 0 0 0 | * * 6 * * * * | 1 1 0 0
... .x.3.o.     | 0 3 0 | 0 0 3 0 0 0 | * * * 2 * * * | 0 1 1 0
... .xx ...&#x  | 0 2 2 | 0 0 1 2 0 1 | * * * * 6 * * | 1 0 1 0
..x ..x ...     | 0 0 4 | 0 0 0 0 2 2 | * * * * * 3 * | 1 0 0 1
... ..x3..o     | 0 0 3 | 0 0 0 0 0 3 | * * * * * * 2 | 0 0 1 1
----------------+-------+-------------+---------------+--------
ofx xxx ...&#xt ♦ 2 4 4 | 1 4 2 4 2 2 | 0 2 2 0 2 1 0 | 3 * * *
... xx.3oo.&#x  ♦ 3 3 0 | 3 3 3 0 0 0 | 1 0 3 1 0 0 0 | * 2 * *
... .xx3.oo&#x  ♦ 0 3 3 | 0 0 3 3 0 3 | 0 0 0 1 3 0 1 | * * 2 *
..x ..x3..o     ♦ 0 0 6 | 0 0 0 0 3 6 | 0 0 0 0 0 3 2 | * * * 1
```