Acronym twagy griddip Name twelve-gyro-augmented great-rhombated-icosidodecahedral prism Dihedral angles at {3} between squippy and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756° at {4} between cube and squippy:   arccos(-3/sqrt(10)) = 161.565051° at {4} between cube and hip:   arccos(-(1+sqrt(5))/sqrt(12)) = 159.094843° at {4} between pecu and trip:   arccos(-sqrt[(3+sqrt(5))/6]) = 159.094843° at {3} between pecu and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {4} between hip and trip:   arccos(-2/sqrt(5)) = 153.434949° at {5} between pecu and pecu:   144° at {10} between grid and pecu:   108° at {4} between cube and grid:   90° at {6} between grid and hip:   90° Confer blend-components: griddip   pepuf   related CRFs: twau griddip   general polytopal classes: bistratic lace towers

For this polychoron the augmentations of the dips of griddip by pepufs is to be done in this orientation ("gyro") that the squippies of pepuf adjoin to cubes. – There is a different orientation of the pepufs as well ("ortho"), using then the trips to adjoin to cubes. This then would result in twau griddip.

Incidence matrix according to Dynkin symbol

```xb3xx5xo xo&#zx   → height = 0, where b = (5+3 sqrt(5))/5 = 2.341641
(tegum sum of griddip and (b,x)-ti)

o.3o.5o. o.    | 240  * |   1   1   1   1   1  0 |  1  1  1  1  1  1   1   1   1  0 | 1  1  1  1  1  1
.o3.o5.o .o    |   * 60 |   0   0   0   0   4  2 |  0  0  0  0  0  0   4   2   2  1 | 0  0  0  2  2  1
---------------+--------+------------------------+----------------------------------+-----------------
x. .. .. ..    |   2  0 | 120   *   *   *   *  * |  1  1  1  0  0  0   0   0   0  0 | 1  1  1  0  0  0
.. x. .. ..    |   2  0 |   * 120   *   *   *  * |  1  0  0  1  1  0   1   0   0  0 | 1  1  0  1  1  0
.. .. x. ..    |   2  0 |   *   * 120   *   *  * |  0  1  0  1  0  1   0   1   0  0 | 1  0  1  1  0  1
.. .. .. x.    |   2  0 |   *   *   * 120   *  * |  0  0  1  0  1  1   0   0   1  0 | 0  1  1  0  1  1
oo3oo5oo oo&#x |   1  1 |   *   *   *   * 240  * |  0  0  0  0  0  0   1   1   1  0 | 0  0  0  1  1  1
.. .x .. ..    |   0  2 |   *   *   *   *   * 60 |  0  0  0  0  0  0   2   0   0  1 | 0  0  0  2  1  0
---------------+--------+------------------------+----------------------------------+-----------------
x.3x. .. ..    |   6  0 |   3   3   0   0   0  0 | 40  *  *  *  *  *   *   *   *  * | 1  1  0  0  0  0
x. .. x. ..    |   4  0 |   2   0   2   0   0  0 |  * 60  *  *  *  *   *   *   *  * | 1  0  1  0  0  0
x. .. .. x.    |   4  0 |   2   0   0   2   0  0 |  *  * 60  *  *  *   *   *   *  * | 0  1  1  0  0  0
.. x.5x. ..    |  10  0 |   0   5   5   0   0  0 |  *  *  * 24  *  *   *   *   *  * | 1  0  0  1  0  0
.. x. .. x.    |   4  0 |   0   2   0   2   0  0 |  *  *  *  * 60  *   *   *   *  * | 0  1  0  0  1  0
.. .. x. x.    |   4  0 |   0   0   2   2   0  0 |  *  *  *  *  * 60   *   *   *  * | 0  0  1  0  0  1
.. xx .. ..&#x |   2  2 |   0   1   0   0   2  1 |  *  *  *  *  *  * 120   *   *  * | 0  0  0  1  1  0
.. .. xo ..&#x |   2  1 |   0   0   1   0   2  0 |  *  *  *  *  *  *   * 120   *  * | 0  0  0  1  0  1
.. .. .. xo&#x |   2  1 |   0   0   0   1   2  0 |  *  *  *  *  *  *   *   * 120  * | 0  0  0  0  1  1
.. .x5.o ..    |   0  5 |   0   0   0   0   0  5 |  *  *  *  *  *  *   *   *   * 12 | 0  0  0  2  0  0
---------------+--------+------------------------+----------------------------------+-----------------
x.3x.5x. ..    ♦ 120  0 |  60  60  60   0   0  0 | 20 30  0 12  0  0   0   0   0  0 | 2  *  *  *  *  *
x.3x. .. x.    ♦  12  0 |   6   6   0   6   0  0 |  2  0  3  0  3  0   0   0   0  0 | * 20  *  *  *  *
x. .. x. x.    ♦   8  0 |   4   0   4   4   0  0 |  0  2  2  0  0  2   0   0   0  0 | *  * 30  *  *  *
.. xx5xo ..&#x ♦  10  5 |   0   5   5   0  10  5 |  0  0  0  1  0  0   5   5   0  1 | *  *  * 24  *  *
.. xx .. xo&#x ♦   4  2 |   0   2   0   2   4  1 |  0  0  0  0  1  0   2   0   2  0 | *  *  *  * 60  *
.. .. xo xo&#x ♦   4  1 |   0   0   2   2   4  0 |  0  0  0  0  0  1   0   2   2  0 | *  *  *  *  * 60
```