Acronym hau gircope Name hexa-augmented gircope Dihedral angles at {4} between cube and trip: arccos(-[1+sqrt(2)]/sqrt(6)) = 170.264390° at {4} between hip and squippy: arccos(-[1+sqrt(2)]/sqrt(6)) = 170.264390° at {3} between squippy and trip:   150° at {4} between cube and hip:   arccos(-sqrt(2/3)) = 144.735610° at {8} between girco and squacu: 135° at {4} between squacu and trip:   arccos(-1/sqrt(3)) = 125.264390° at {3} between squacu and squippy:   120° at {8} between cube and girco: 90° at {6} between girco and hip: 90° at {4} between squacu and squacu:   90° Confer blend-component: gircope   squipuf   related CRFs: hagy gircope   general polytopal classes: bistratic lace towers

For this polychoron the augmentations of the ops of gircope by squipufs is to be done in this orientation ("ortho") that the trips of squipuf adjoin to the cubes. Additionally, as these happen to be corealmic here, they even combine into esquidpies. – There is a different orientation of the squipufs as well ("gyro"), using then the squippies to adjoin to the cubes. This then would result in hagy gircope.

Incidence matrix according to Dynkin symbol

```xb3xo4xx xo&#zx   → height = 0, where b = x+w/q = 2.707107
(tegum sum of gircope and (b,x)-sirco

o.3o.4o. o.    | 96  * |  1  1  1  1  1  0 |  1  1  1  1  1  1  1  1  1 0 | 1 1  1  1  1  1
.o3.o4.o .o    |  * 24 |  0  0  0  0  4  2 |  0  0  0  0  0  0  2  4  2 1 | 0 0  0  2  1  2
---------------+-------+-------------------+------------------------------+----------------
x. .. .. ..    |  2  0 | 48  *  *  *  *  * |  1  1  1  0  0  0  0  0  0 0 | 1 1  1  0  0  0
.. x. .. ..    |  2  0 |  * 48  *  *  *  * |  1  0  0  1  1  0  1  0  0 0 | 1 1  0  1  1  0
.. .. x. ..    |  2  0 |  *  * 48  *  *  * |  0  1  0  1  0  1  0  1  0 0 | 1 0  1  1  0  1
.. .. .. x.    |  2  0 |  *  *  * 48  *  * |  0  0  1  0  1  1  0  0  1 0 | 0 1  1  0  1  1
oo3oo4oo oo&#x |  1  1 |  *  *  *  * 96  * |  0  0  0  0  0  0  1  1  1 0 | 0 0  0  1  1  1
.. .. .x ..    |  0  2 |  *  *  *  *  * 24 |  0  0  0  0  0  0  0  2  0 1 | 0 0  0  2  0  1
---------------+-------+-------------------+------------------------------+----------------
x.3x. .. ..    |  6  0 |  3  3  0  0  0  0 | 16  *  *  *  *  *  *  *  * * | 1 1  0  0  0  0
x. .. x. ..    |  4  0 |  2  0  2  0  0  0 |  * 24  *  *  *  *  *  *  * * | 1 0  1  0  0  0
x. .. .. x.    |  4  0 |  2  0  0  2  0  0 |  *  * 24  *  *  *  *  *  * * | 0 1  1  0  0  0
.. x.4x. ..    |  8  0 |  0  4  4  0  0  0 |  *  *  * 12  *  *  *  *  * * | 1 0  0  1  0  0
.. x. .. x.    |  4  0 |  0  2  0  2  0  0 |  *  *  *  * 24  *  *  *  * * | 0 1  0  0  1  0
.. .. x. x.    |  4  0 |  0  0  2  2  0  0 |  *  *  *  *  * 24  *  *  * * | 0 0  1  0  0  1
.. xo .. ..&#x |  2  1 |  0  1  0  0  2  0 |  *  *  *  *  *  * 48  *  * * | 0 0  0  1  1  0
.. .. xx ..&#x |  2  2 |  0  0  1  0  2  1 |  *  *  *  *  *  *  * 48  * * | 0 0  0  1  0  1
.. .. .. xo&#x |  2  1 |  0  0  0  1  2  0 |  *  *  *  *  *  *  *  * 48 * | 0 0  0  0  1  1
.. .o4.x ..    |  0  4 |  0  0  0  0  0  4 |  *  *  *  *  *  *  *  *  * 6 | 0 0  0  2  0  0
---------------+-------+-------------------+------------------------------+----------------
x.3x.4x. ..    ♦ 48  0 | 24 24 24  0  0  0 |  8 12  0  6  0  0  0  0  0 0 | 2 *  *  *  *  *
x.3x. .. x.    ♦ 12  0 |  6  6  0  6  0  0 |  2  0  3  0  3  0  0  0  0 0 | * 8  *  *  *  *
x. .. x. x.    ♦  8  0 |  4  0  4  4  0  0 |  0  2  2  0  0  2  0  0  0 0 | * * 12  *  *  *
.. xo4xx ..&#x ♦  8  4 |  0  4  4  0  8  4 |  0  0  0  1  0  0  4  4  0 1 | * *  * 12  *  *
.. xo .. xo&#x ♦  4  1 |  0  2  0  2  4  0 |  0  0  0  0  1  0  2  0  2 0 | * *  *  * 24  *
.. .. xx xo&#x ♦  4  2 |  0  0  2  2  4  1 |  0  0  0  0  0  1  0  2  2 0 | * *  *  *  * 24
```