Acronym sripper
Name bistratic srip faceting xux3xoo xo(-x)&#xt
 
 ©
Circumradius sqrt(7/5) = 1.183216
Lace city
in approx. ASCII-art
               _+--------- x3o x (trip)
            _/        _+-- x3x x (hip)
         _/        _/

    x3o  ...  
              
x3o  u3o  x3x 		-- x3x3o (tut)
              
 ...  x3x  ...
Face vector 21, 45, 34, 10
Confer
uniform relative:
srip  
general polytopal classes:
ebotics

In 2025 B. Klein came up with this non-convex regular-faced bistratic lace tower, thereby pointing out that ebots can be used for facets in a non-trivial way too. He derived it as a bistratic faceting of srip.


Incidence matrix according to Dynkin symbol

xux3xoo xo(-x)&#xt   → both heights = sqrt(5/12) = 0.645497

o..3o.. o.  .      | 12 * * | 1 1 1  1 0 0 0 | 1 1 1 1 1 1 0 0 0 | 1 1 1 1 0
.o.3.o. .o  .      |  * 3 * | 0 0 0  4 2 0 0 | 0 0 0 4 2 2 1 0 0 | 0 2 2 1 0
..o3..o ..  o      |  * * 6 | 0 0 0  0 1 2 1 | 0 0 0 2 0 0 1 1 2 | 0 1 2 0 1
-------------------+--------+----------------+-------------------+----------
x.. ... ..  .      |  2 0 0 | 6 * *  * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
... x.. ..  .      |  2 0 0 | * 6 *  * * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0
... ... x.  .      |  2 0 0 | * * 6  * * * * | 0 1 1 0 0 1 0 0 0 | 1 0 1 1 0
oo.3oo. oo  . &#x  |  1 1 0 | * * * 12 * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.oo3.oo .o  o &#x  |  0 1 1 | * * *  * 6 * * | 0 0 0 2 0 0 1 0 0 | 0 1 2 0 0
..x ... ..  .      |  0 0 2 | * * *  * * 6 * | 0 0 0 1 0 0 0 1 1 | 0 1 1 0 1
... ... ..(-x)     |  0 0 2 | * * *  * * * 3 | 0 0 0 0 0 0 1 0 2 | 0 0 2 0 1
-------------------+--------+----------------+-------------------+----------
x..3x.. ..  .      |  6 0 0 | 3 3 0  0 0 0 0 | 2 * * * * * * * * | 1 1 0 0 0
x.. ... x.  .      |  4 0 0 | 2 0 2  0 0 0 0 | * 3 * * * * * * * | 1 0 1 0 0
... x.. x.  .      |  4 0 0 | 0 2 2  0 0 0 0 | * * 3 * * * * * * | 1 0 0 1 0
xux ... ..  . &#xt |  2 2 2 | 1 0 0  2 2 1 0 | * * * 6 * * * * * | 0 1 1 0 0
... xo. ..  . &#x  |  2 1 0 | 0 1 0  2 0 0 0 | * * * * 6 * * * * | 0 1 0 1 0
... ... xo  . &#x  |  2 1 0 | 0 0 1  2 0 0 0 | * * * * * 6 * * * | 0 0 1 1 0
... ... .o(-x)&#x  |  0 1 2 | 0 0 0  0 2 0 1 | * * * * * * 3 * * | 0 0 2 0 0
..x3..o ..  .      |  0 0 3 | 0 0 0  0 0 3 0 | * * * * * * * 2 * | 0 1 0 0 1
..x ... ..(-x)     |  0 0 4 | 0 0 0  0 0 2 2 | * * * * * * * * 3 | 0 0 1 0 1
-------------------+--------+----------------+-------------------+----------
x..3x.. x.  .       12 0 0 | 6 6 6  0 0 0 0 | 2 3 3 0 0 0 0 0 0 | 1 * * * *
xux3xoo ..  . &#xt   6 3 3 | 3 3 0  6 3 3 0 | 1 0 0 3 3 0 0 1 0 | * 2 * * *
xux ... xo(-x)&#xt   4 2 4 | 2 0 2  4 4 2 2 | 0 1 0 2 0 2 2 0 1 | * * 3 * *
... xo. xo  . &#x    4 1 0 | 0 2 2  4 0 0 0 | 0 0 1 0 2 2 0 0 0 | * * * 3 *
..x3..o ..(-x)       0 0 6 | 0 0 0  0 0 6 3 | 0 0 0 0 0 0 0 2 3 | * * * * 1

© 2004-2026
top of page