Acronym gaquapan
Name great quasiprismated penteract
Field of sections
 ©
Circumradius sqrt[51-18 sqrt(2)]/2 = 2.527061
Vertex figure
 ©
Coordinates (3 sqrt(2)-1, 3 sqrt(2)-1, 2 sqrt(2)-1, sqrt(2)-1, 1)/2   & all permutations, all changes of sign
Face vector 1920, 4800, 4240, 1530, 202
Confer
general polytopal classes:
Wythoffian polytera  
External
links
hedrondude   polytopewiki

As abstract polyteron gaquapan is isomorph to gippin, thereby replacing octagrams by octagons, resp. quitco by girco and stop by op, resp. gaquidpoth by gidpith and tistodip by todip.


Incidence matrix according to Dynkin symbol

o3x3x3x4/3x

. . . .   . | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1   1   2   2   2  1 |  1  1  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
. x . .   . |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1   1   1   1   1  0 |  1  1  1  1
. . x .   . |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0   0   2   2   0  1 |  1  1  0  2
. . . x   . |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1   0   2   0   2  1 |  1  0  1  2
. . . .   x |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0   1   0   2   2  1 |  0  1  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x . .   . |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0
. x3x .   . |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0   0   1   1   0  0 |  1  1  0  1
. x . x   . |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1   0   1   0   1  0 |  1  0  1  1
. x . .   x |    4 |    2   0   0   2 |   *   *   * 960   *   *   * |   0   0   1   0   1   1  0 |  0  1  1  1
. . x3x   . |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0   0   2   0   0  1 |  1  0  0  2
. . x .   x |    4 |    0   2   0   2 |   *   *   *   *   * 480   * |   0   0   0   0   2   0  1 |  0  1  0  2
. . . x4/3x |    8 |    0   0   4   4 |   *   *   *   *   *   * 240 |   0   0   0   0   0   2  1 |  0  0  1  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x3x .   .    12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0
o3x . x   .     6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0
o3x . .   x     6 |    6   0   0   3 |   2   0   0   3   0   0   0 |   *   * 320   *   *   *  * |  0  1  1  0
. x3x3x   .    24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *   * 160   *   *  * |  1  0  0  1
. x3x .   x    12 |    6   6   0   6 |   0   2   0   3   0   3   0 |   *   *   *   * 320   *  * |  0  1  0  1
. x . x4/3x    16 |    8   0   8   8 |   0   0   4   4   0   0   2 |   *   *   *   *   * 240  * |  0  0  1  1
. . x3x4/3x    48 |    0  24  24  24 |   0   0   0   0   8  12   6 |   *   *   *   *   *   * 40 |  0  0  0  2
------------+------+------------------+-----------------------------+----------------------------+------------
o3x3x3x   .    60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10   0   5   0   0  0 | 32  *  *  *
o3x3x .   x    24 |   24  12   0  12 |   8   8   0  12   0   6   0 |   2   0   4   0   4   0  0 |  * 80  *  *
o3x . x4/3x    24 |   24   0  12  12 |   8   0  12  12   0   0   3 |   0   4   4   0   0   3  0 |  *  * 80  *
. x3x3x4/3x   384 |  192 192 192 192 |   0  64  96  96  64  96  48 |   0   0   0  16  32  24  8 |  *  *  * 10

o3/2x3x3x4/3x

.   . . .   . | 1920 |    2   1   1   1 |   1   2   2   2   1   1   1 |   1   1   1   2   2   2  1 |  1  1  1  2
--------------+------+------------------+-----------------------------+----------------------------+------------
.   x . .   . |    2 | 1920   *   *   * |   1   1   1   1   0   0   0 |   1   1   1   1   1   1  0 |  1  1  1  1
.   . x .   . |    2 |    * 960   *   * |   0   2   0   0   1   1   0 |   1   0   0   2   2   0  1 |  1  1  0  2
.   . . x   . |    2 |    *   * 960   * |   0   0   2   0   1   0   1 |   0   1   0   2   0   2  1 |  1  0  1  2
.   . . .   x |    2 |    *   *   * 960 |   0   0   0   2   0   1   1 |   0   0   1   0   2   2  1 |  0  1  1  2
--------------+------+------------------+-----------------------------+----------------------------+------------
o3/2x . .   . |    3 |    3   0   0   0 | 640   *   *   *   *   *   * |   1   1   1   0   0   0  0 |  1  1  1  0
.   x3x .   . |    6 |    3   3   0   0 |   * 640   *   *   *   *   * |   1   0   0   1   1   0  0 |  1  1  0  1
.   x . x   . |    4 |    2   0   2   0 |   *   * 960   *   *   *   * |   0   1   0   1   0   1  0 |  1  0  1  1
.   x . .   x |    4 |    2   0   0   2 |   *   *   * 960   *   *   * |   0   0   1   0   1   1  0 |  0  1  1  1
.   . x3x   . |    6 |    0   3   3   0 |   *   *   *   * 320   *   * |   0   0   0   2   0   0  1 |  1  0  0  2
.   . x .   x |    4 |    0   2   0   2 |   *   *   *   *   * 480   * |   0   0   0   0   2   0  1 |  0  1  0  2
.   . . x4/3x |    8 |    0   0   4   4 |   *   *   *   *   *   * 240 |   0   0   0   0   0   2  1 |  0  0  1  2
--------------+------+------------------+-----------------------------+----------------------------+------------
o3/2x3x .   .    12 |   12   6   0   0 |   4   4   0   0   0   0   0 | 160   *   *   *   *   *  * |  1  1  0  0
o3/2x . x   .     6 |    6   0   3   0 |   2   0   3   0   0   0   0 |   * 320   *   *   *   *  * |  1  0  1  0
o3/2x . .   x     6 |    6   0   0   3 |   2   0   0   3   0   0   0 |   *   * 320   *   *   *  * |  0  1  1  0
.   x3x3x   .    24 |   12  12  12   0 |   0   4   6   0   4   0   0 |   *   *   * 160   *   *  * |  1  0  0  1
.   x3x .   x    12 |    6   6   0   6 |   0   2   0   3   0   3   0 |   *   *   *   * 320   *  * |  0  1  0  1
.   x . x4/3x    16 |    8   0   8   8 |   0   0   4   4   0   0   2 |   *   *   *   *   * 240  * |  0  0  1  1
.   . x3x4/3x    48 |    0  24  24  24 |   0   0   0   0   8  12   6 |   *   *   *   *   *   * 40 |  0  0  0  2
--------------+------+------------------+-----------------------------+----------------------------+------------
o3/2x3x3x   .    60 |   60  30  30   0 |  20  20  30   0  10   0   0 |   5  10   0   5   0   0  0 | 32  *  *  *
o3/2x3x .   x    24 |   24  12   0  12 |   8   8   0  12   0   6   0 |   2   0   4   0   4   0  0 |  * 80  *  *
o3/2x . x4/3x    24 |   24   0  12  12 |   8   0  12  12   0   0   3 |   0   4   4   0   0   3  0 |  *  * 80  *
.   x3x3x4/3x   384 |  192 192 192 192 |   0  64  96  96  64  96  48 |   0   0   0  16  32  24  8 |  *  *  * 10

© 2004-2025
top of page