Acronym | gippin |
Name |
great prismated penteract, runcicantitruncated penteract |
Field of sections |
|
Circumradius | sqrt[51+18 sqrt(2)]/2 = 4.371952 |
Vertex figure |
|
Coordinates | (1+3 sqrt(2), 1+3 sqrt(2), 1+2 sqrt(2), 1+sqrt(2), 1)/2 & all permutations, all changes of sign |
Face vector | 1920, 4800, 4240, 1560, 202 |
Confer |
|
External links |
![]() ![]() ![]() |
As abstract polyteron gippin is isomorph to gaquapan, thereby replacing octagons by octagrams, resp. girco by quitco and op by stop, resp. gidpith by gaquidpoth and todip by tistodip.
Incidence matrix according to Dynkin symbol
o3x3x3x4x . . . . . | 1920 | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ----------+------+------------------+-----------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 960 * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 960 * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 960 | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ----------+------+------------------+-----------------------------+----------------------------+------------ o3x . . . | 3 | 3 0 0 0 | 640 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3x . . | 6 | 3 3 0 0 | * 640 * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 0 2 0 | * * 960 * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 0 2 | * * * 960 * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 0 2 | * * * * * 480 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x4x | 8 | 0 0 4 4 | * * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 ----------+------+------------------+-----------------------------+----------------------------+------------ o3x3x . . ♦ 12 | 12 6 0 0 | 4 4 0 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3x . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 | * 320 * * * * * | 1 0 1 0 o3x . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 | * * 320 * * * * | 0 1 1 0 . x3x3x . ♦ 24 | 12 12 12 0 | 0 4 6 0 4 0 0 | * * * 160 * * * | 1 0 0 1 . x3x . x ♦ 12 | 6 6 0 6 | 0 2 0 3 0 3 0 | * * * * 320 * * | 0 1 0 1 . x . x4x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 2 | * * * * * 240 * | 0 0 1 1 . . x3x4x ♦ 48 | 0 24 24 24 | 0 0 0 0 8 12 6 | * * * * * * 40 | 0 0 0 2 ----------+------+------------------+-----------------------------+----------------------------+------------ o3x3x3x . ♦ 60 | 60 30 30 0 | 20 20 30 0 10 0 0 | 5 10 0 5 0 0 0 | 32 * * * o3x3x . x ♦ 24 | 24 12 0 12 | 8 8 0 12 0 6 0 | 2 0 4 0 4 0 0 | * 80 * * o3x . x4x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3x3x4x ♦ 384 | 192 192 192 192 | 0 64 96 96 64 96 48 | 0 0 0 16 32 24 8 | * * * 10 snubbed forms: o3x3x3x4s
o3/2x3x3x4x . . . . . | 1920 | 2 1 1 1 | 1 2 2 2 1 1 1 | 1 1 1 2 2 2 1 | 1 1 1 2 ------------+------+------------------+-----------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * * | 1 1 1 1 0 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . x . . | 2 | * 960 * * | 0 2 0 0 1 1 0 | 1 0 0 2 2 0 1 | 1 1 0 2 . . . x . | 2 | * * 960 * | 0 0 2 0 1 0 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * * 960 | 0 0 0 2 0 1 1 | 0 0 1 0 2 2 1 | 0 1 1 2 ------------+------+------------------+-----------------------------+----------------------------+------------ o3/2x . . . | 3 | 3 0 0 0 | 640 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3x . . | 6 | 3 3 0 0 | * 640 * * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 0 2 0 | * * 960 * * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 0 2 | * * * 960 * * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . x3x . | 6 | 0 3 3 0 | * * * * 320 * * | 0 0 0 2 0 0 1 | 1 0 0 2 . . x . x | 4 | 0 2 0 2 | * * * * * 480 * | 0 0 0 0 2 0 1 | 0 1 0 2 . . . x4x | 8 | 0 0 4 4 | * * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 ------------+------+------------------+-----------------------------+----------------------------+------------ o3/2x3x . . ♦ 12 | 12 6 0 0 | 4 4 0 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3/2x . x . ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 | * 320 * * * * * | 1 0 1 0 o3/2x . . x ♦ 6 | 6 0 0 3 | 2 0 0 3 0 0 0 | * * 320 * * * * | 0 1 1 0 . x3x3x . ♦ 24 | 12 12 12 0 | 0 4 6 0 4 0 0 | * * * 160 * * * | 1 0 0 1 . x3x . x ♦ 12 | 6 6 0 6 | 0 2 0 3 0 3 0 | * * * * 320 * * | 0 1 0 1 . x . x4x ♦ 16 | 8 0 8 8 | 0 0 4 4 0 0 2 | * * * * * 240 * | 0 0 1 1 . . x3x4x ♦ 48 | 0 24 24 24 | 0 0 0 0 8 12 6 | * * * * * * 40 | 0 0 0 2 ------------+------+------------------+-----------------------------+----------------------------+------------ o3/2x3x3x . ♦ 60 | 60 30 30 0 | 20 20 30 0 10 0 0 | 5 10 0 5 0 0 0 | 32 * * * o3/2x3x . x ♦ 24 | 24 12 0 12 | 8 8 0 12 0 6 0 | 2 0 4 0 4 0 0 | * 80 * * o3/2x . x4x ♦ 24 | 24 0 12 12 | 8 0 12 12 0 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3x3x4x ♦ 384 | 192 192 192 192 | 0 64 96 96 64 96 48 | 0 0 0 16 32 24 8 | * * * 10
© 2004-2025 | top of page |