| Acronym | hinsc | 
| Name | demipenteractic scalene, demipenteractic-pyramid pyramid, line atop fully orthogonal demipenteract | 
| Circumradius | sqrt(3)/2 = 0.866025 | 
| Lace city in approx. ASCII-art | 
o   
    		where:
   N		o = o3o3o *b3o3o  (pt)
    		N = x3o3o *b3o3o  (hin)
o   
 | 
| Face vector | 18, 113, 336, 520, 426, 173, 28 | 
| Confer | 
 | 
Incidence matrix according to Dynkin symbol
xo ox3oo3oo *c3oo3oo&#x   → height = 1/sqrt(8) = 0.353553
(line || perp hin)
o. o.3o.3o. *c3o.3o.    | 2  * ♦ 1 16  0 | 16  80   0 | 80 160  0  0 | 160 40  80  0  0 | 40 80 10 16 0 | 10 16 1
.o .o3.o3.o *c3.o3.o    | * 16 ♦ 0  2 10 |  1  20  30 | 10  60 10 20 |  30 20  40  5  5 | 10 20 10 10 1 |  5  5 2
------------------------+------+---------+------------+--------------+------------------+---------------+--------
x. .. .. ..    .. ..    | 2  0 | 1  *  * ♦ 16   0   0 | 80   0  0  0 | 160  0   0  0  0 | 40 80  0  0 0 | 10 16 0
oo oo3oo3oo *c3oo3oo&#x | 1  1 | * 32  * ♦  1  10   0 | 10  30  0  0 |  30 10  20  0  0 | 10 20  5  5 0 |  5  5 1
.. .x .. ..    .. ..    | 0  2 | *  * 80 ♦  0   2   6 |  1  12  3  6 |   6  6  12  3  2 |  3  6  6  4 1 |  3  2 2
------------------------+------+---------+------------+--------------+------------------+---------------+--------
xo .. .. ..    .. ..&#x | 2  1 | 1  2  0 | 16   *   * ♦ 10   0  0  0 |  30  0   0  0  0 | 10 20  0  0 0 |  5  5 0
.. ox .. ..    .. ..&#x | 1  2 | 0  2  1 |  * 160   * ♦  1   6  0  0 |   6  3   6  0  0 |  3  6  3  2 0 |  3  2 1
.. .x3.o ..    .. ..    | 0  3 | 0  0  3 |  *   * 160 |  0   2  1  2 |   1  2   4  2  1 |  1  2  4  2 1 |  2  1 2
------------------------+------+---------+------------+--------------+------------------+---------------+--------
xo ox .. ..    .. ..&#x ♦ 2  2 | 1  4  1 |  2   2   0 | 80   *  *  * ♦   6  0   0  0  0 |  3  6  0  0 0 |  3  2 0
.. ox3oo ..    .. ..&#x ♦ 1  3 | 0  3  3 |  0   3   1 |  * 320  *  * |   1  1   2  0  0 |  1  2  2  1 0 |  2  1 1
.. .x3.o3.o    .. ..    ♦ 0  4 | 0  0  6 |  0   0   4 |  *   * 40  * |   0  2   0  2  0 |  1  0  4  0 1 |  2  0 2
.. .x3.o .. *c3.o ..    ♦ 0  4 | 0  0  6 |  0   0   4 |  *   *  * 80 |   0  0   2  1  1 |  0  1  2  2 1 |  1  1 2
------------------------+------+---------+------------+--------------+------------------+---------------+--------
xo ox3oo ..    .. ..&#x ♦ 2  3 | 1  6  3 |  3   6   1 |  3   2  0  0 | 160  *   *  *  * |  1  2  0  0 0 |  2  1 0
.. ox3oo3oo    .. ..&#x ♦ 1  4 | 0  4  6 |  0   6   4 |  0   4  1  0 |   * 80   *  *  * |  1  0  2  0 0 |  2  0 1
.. ox3oo .. *c3oo ..&#x ♦ 1  4 | 0  4  6 |  0   6   4 |  0   4  0  1 |   *  * 160  *  * |  0  1  1  1 0 |  1  1 1
.. .x3.o3.o *c3.o ..    ♦ 0  8 | 0  0 24 |  0   0  32 |  0   0  8  8 |   *  *   * 10  * |  0  0  2  0 1 |  1  0 2
.. .x3.o .. *c3.o3.o    ♦ 0  5 | 0  0 10 |  0   0  10 |  0   0  0  5 |   *  *   *  * 16 |  0  0  0  2 1 |  0  1 2
------------------------+------+---------+------------+--------------+------------------+---------------+--------
xo ox3oo3oo    .. ..&#x ♦ 2  4 | 1  8  6 |  4  12   4 |  6   8  1  0 |   4  2   0  0  0 | 40  *  *  * * |  2  0 0
xo ox3oo .. *c3oo ..&#x ♦ 2  4 | 1  8  6 |  4  12   4 |  6   8  0  1 |   4  0   2  0  0 |  * 80  *  * * |  1  1 0
.. ox3oo3oo *c3oo ..&#x ♦ 1  8 | 0  8 24 |  0  24  32 |  0  32  8  8 |   0  8   8  1  0 |  *  * 20  * * |  1  0 1
.. ox3oo .. *c3oo3oo&#x ♦ 1  5 | 0  5 10 |  0  10  10 |  0  10  0  5 |   0  0   5  0  1 |  *  *  * 32 * |  0  1 1
.. .x3.o3.o *c3.o3.o    ♦ 0 16 | 0  0 80 |  0   0 160 |  0   0 40 80 |   0  0   0 10 16 |  *  *  *  * 1 |  0  0 2
------------------------+------+---------+------------+--------------+------------------+---------------+--------
xo ox3oo3oo *c3oo ..&#x ♦ 2  8 | 1 16 24 |  8  48  32 | 24  64  8  8 |  32 16  16  1  0 |  8  8  2  0 0 | 10  * *
xo ox3oo .. *c3oo3oo&#x ♦ 2  5 | 1 10 10 |  5  20  10 | 10  20  0  5 |  10  0  10  0  1 |  0  5  0  2 0 |  * 16 *
.. ox3oo3oo *c3oo3oo&#x ♦ 1 16 | 0 16 80 |  0  80 160 |  0 160 40 80 |   0 40  80 10 16 |  0  0 10 16 1 |  *  * 2
x(oo) o(xo) o(ox) o(xo)3o(oo)3o(ox)&#x → height(1,23) = 1/sqrt(8) = 0.353553 (line || tegum sum of 2 gyrated and lacings-orthogonal tepes) o(..) o(..) o(..) o(..)3o(..)3o(..) | 2 * ♦ 1 16 0 0 0 | 16 8 24 48 0 0 0 | 8 24 16 48 48 96 0 0 0 0 0 | 16 4 48 96 12 48 32 24 0 0 0 | 4 12 48 32 24 6 16 4 0 | 6 16 4 1 .(o.) .(o.) .(o.) .(o.)3.(o.)3.(o.) & | * 16 ♦ 0 2 1 3 6 | 1 2 6 12 3 9 18 | 1 3 6 6 18 36 1 3 12 8 6 | 3 2 9 18 6 24 16 12 3 5 2 | 1 3 12 8 6 6 10 4 1 | 3 5 2 2 -----------------------------------------+------+--------------+----------------------+---------------------------------+-------------------------------+-------------------------+--------- x(..) .(..) .(..) .(..) .(..) .(..) | 2 0 | 1 * * * * ♦ 16 0 0 0 0 0 0 | 8 24 0 48 0 0 0 0 0 0 0 | 16 0 48 96 0 0 0 0 0 0 0 | 4 12 48 32 24 0 0 0 0 | 6 16 4 0 o(o.) o(o.) o(o.) o(o.)3o(o.)3o(o.)&#x & | 1 1 | * 32 * * * ♦ 1 1 3 6 0 0 0 | 1 3 3 6 9 18 0 0 0 0 0 | 3 1 9 18 3 12 8 6 0 0 0 | 1 3 12 8 6 3 5 2 0 | 3 5 2 1 .(..) .(x.) .(..) .(..) .(..) .(..) & | 0 2 | * * 8 * * ♦ 0 2 0 0 0 6 0 | 1 0 0 0 12 0 0 3 6 0 0 | 0 0 6 0 6 12 0 0 3 2 0 | 0 3 6 0 0 6 4 0 1 | 3 2 0 2 .(..) .(..) .(..) .(x.) .(..) .(..) & | 0 2 | * * * 24 * ♦ 0 0 2 0 2 0 4 | 0 1 4 0 0 8 1 0 2 4 2 | 2 2 0 4 0 4 8 4 1 2 2 | 1 0 2 4 2 2 4 4 1 | 1 2 2 2 .(oo) .(oo) .(oo) .(oo)3.(oo)3.(oo)&#x | 0 2 | * * * * 48 ♦ 0 0 0 2 0 2 4 | 0 0 0 1 4 8 0 1 4 2 2 | 0 0 2 4 2 8 4 4 2 2 1 | 0 1 4 2 2 4 4 2 1 | 2 2 1 2 -----------------------------------------+------+--------------+----------------------+---------------------------------+-------------------------------+-------------------------+--------- x(o.) .(..) .(..) .(..) .(..) .(..)&#x & | 2 1 | 1 2 0 0 0 | 16 * * * * * * ♦ 1 3 0 6 0 0 0 0 0 0 0 | 3 0 9 18 0 0 0 0 0 0 0 | 1 3 12 8 6 0 0 0 0 | 3 5 2 0 .(..) o(x.) .(..) .(..) .(..) .(..)&#x & | 1 2 | 0 2 1 0 0 | * 16 * * * * * ♦ 1 0 0 0 6 0 0 0 0 0 0 | 0 0 6 0 3 6 0 0 0 0 0 | 0 3 6 0 0 3 2 0 0 | 3 2 0 1 .(..) .(..) .(..) o(x.) .(..) .(..)&#x & | 1 2 | 0 2 0 1 0 | * * 48 * * * * ♦ 0 1 2 0 0 4 0 0 0 0 0 | 2 1 0 4 0 2 4 2 0 0 0 | 1 0 2 4 2 1 2 2 0 | 1 2 2 1 o(oo) o(oo) o(oo) o(oo)3o(oo)3o(oo)&#x | 1 2 | 0 2 0 0 1 | * * * 96 * * * ♦ 0 0 0 1 2 4 0 0 0 0 0 | 0 0 2 4 1 4 2 2 0 0 0 | 0 1 4 2 2 2 2 1 0 | 2 2 1 1 .(..) .(..) .(..) .(x.)3.(o.) .(..) & | 0 3 | 0 0 0 3 0 | * * * * 16 * * | 0 0 2 0 0 0 1 0 0 2 0 | 1 2 0 0 0 0 4 0 0 1 2 | 1 0 0 2 0 0 2 4 1 | 0 1 2 2 .(..) .(xo) .(..) .(..) .(..) .(..)&#x & | 0 3 | 0 0 1 0 2 | * * * * * 48 * | 0 0 0 0 2 0 0 1 2 0 0 | 0 0 1 0 2 4 0 0 2 1 0 | 0 1 2 0 0 4 2 0 1 | 2 1 0 2 .(..) .(..) .(..) .(xo) .(..) .(..)&#x & | 0 3 | 0 0 0 1 2 | * * * * * * 96 | 0 0 0 0 0 2 0 0 1 1 1 | 0 0 0 1 0 2 2 2 1 1 1 | 0 0 1 1 1 2 2 2 1 | 1 1 1 2 -----------------------------------------+------+--------------+----------------------+---------------------------------+-------------------------------+-------------------------+--------- x(o.) o(x.) .(..) .(..) .(..) .(..)&#x & ♦ 2 2 | 1 4 1 0 0 | 2 2 0 0 0 0 0 | 8 * * * * * * * * * * ♦ 0 0 6 0 0 0 0 0 0 0 0 | 0 3 6 0 0 0 0 0 0 | 3 2 0 0 x(o.) .(..) .(..) o(x.) .(..) .(..)&#x & ♦ 2 2 | 1 4 0 1 0 | 2 0 2 0 0 0 0 | * 24 * * * * * * * * * ♦ 2 0 0 4 0 0 0 0 0 0 0 | 1 0 2 4 2 0 0 0 0 | 1 2 2 0 .(..) .(..) .(..) o(x.)3o(o.) .(..)&#x & ♦ 1 3 | 0 3 0 3 0 | 0 0 3 0 1 0 0 | * * 32 * * * * * * * * | 1 1 0 0 0 0 2 0 0 0 0 | 1 0 0 2 0 0 1 2 0 | 0 1 2 1 x(oo) .(..) .(..) .(..) .(..) .(..)&#x & ♦ 2 2 | 1 4 0 0 1 | 2 0 0 2 0 0 0 | * * * 48 * * * * * * * ♦ 0 0 2 4 0 0 0 0 0 0 0 | 0 1 4 2 2 0 0 0 0 | 2 2 1 0 .(..) o(xo) .(..) .(..) .(..) .(..)&#x & ♦ 1 3 | 0 3 1 0 2 | 0 1 0 2 0 1 0 | * * * * 96 * * * * * * | 0 0 1 0 1 2 0 0 0 0 0 | 0 1 2 0 0 2 1 0 0 | 2 1 0 1 .(..) .(..) .(..) o(xo) .(..) .(..)&#x & ♦ 1 3 | 0 3 0 1 2 | 0 0 1 2 0 0 1 | * * * * * 192 * * * * * | 0 0 0 1 0 1 1 1 0 0 0 | 0 0 1 1 1 1 1 1 0 | 1 1 1 1 .(..) .(..) .(..) .(x.)3.(o.)3.(o.) & ♦ 0 4 | 0 0 0 6 0 | 0 0 0 0 4 0 0 | * * * * * * 4 * * * * | 0 2 0 0 0 0 0 0 0 0 2 | 1 0 0 0 0 0 0 4 1 | 0 0 2 2 .(..) .(xo) .(ox) .(..) .(..) .(..)&#x ♦ 0 4 | 0 0 2 0 4 | 0 0 0 0 0 4 0 | * * * * * * * 12 * * * | 0 0 0 0 2 0 0 0 2 0 0 | 0 1 0 0 0 4 0 0 1 | 2 0 0 2 .(..) .(xo) .(..) .(..) .(..) .(ox)&#x & ♦ 0 4 | 0 0 1 1 4 | 0 0 0 0 0 2 2 | * * * * * * * * 48 * * | 0 0 0 0 0 2 0 0 1 1 0 | 0 0 1 0 0 2 2 0 1 | 1 1 0 2 .(..) .(..) .(..) .(xo)3.(oo) .(..)&#x & ♦ 0 4 | 0 0 0 3 3 | 0 0 0 0 1 0 3 | * * * * * * * * * 32 * | 0 0 0 0 0 0 2 0 0 1 1 | 0 0 0 1 0 0 2 2 1 | 0 1 1 2 .(..) .(..) .(..) .(xo) .(..) .(ox)&#x ♦ 0 4 | 0 0 0 2 4 | 0 0 0 0 0 0 4 | * * * * * * * * * * 24 | 0 0 0 0 0 0 0 2 1 0 1 | 0 0 0 0 1 2 0 2 1 | 1 0 1 2 -----------------------------------------+------+--------------+----------------------+---------------------------------+-------------------------------+-------------------------+--------- x(o.) .(..) .(..) o(x.)3o(o.) .(..)&#x & ♦ 2 3 | 1 6 0 3 0 | 3 0 6 0 1 0 0 | 0 3 2 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * | 1 0 0 2 0 0 0 0 0 | 0 1 2 0 .(..) .(..) .(..) o(x.)3o(o.)3o(o.)&#x & ♦ 1 4 | 0 4 0 6 0 | 0 0 6 0 4 0 0 | 0 0 4 0 0 0 1 0 0 0 0 | * 8 * * * * * * * * * | 1 0 0 0 0 0 0 2 0 | 0 0 2 1 x(oo) o(xo) .(..) .(..) .(..) .(..)&#x & ♦ 2 3 | 1 6 1 0 2 | 3 2 0 4 0 1 0 | 1 0 0 2 2 0 0 0 0 0 0 | * * 48 * * * * * * * * | 0 1 2 0 0 0 0 0 0 | 2 1 0 0 x(oo) .(..) .(..) o(xo) .(..) .(..)&#x & ♦ 2 3 | 1 6 0 1 2 | 3 0 2 4 0 0 1 | 0 1 0 2 0 2 0 0 0 0 0 | * * * 96 * * * * * * * | 0 0 1 1 1 0 0 0 0 | 1 1 1 0 .(..) o(xo) o(ox) .(..) .(..) .(..)&#x ♦ 1 4 | 0 4 2 0 4 | 0 2 0 4 0 4 0 | 0 0 0 0 4 0 0 1 0 0 0 | * * * * 24 * * * * * * | 0 1 0 0 0 2 0 0 0 | 2 0 0 1 .(..) o(xo) .(..) .(..) .(..) o(ox)&#x & ♦ 1 4 | 0 4 1 1 4 | 0 1 1 4 0 2 2 | 0 0 0 0 2 2 0 0 1 0 0 | * * * * * 96 * * * * * | 0 0 1 0 0 1 1 0 0 | 1 1 0 1 .(..) .(..) .(..) o(xo)3o(oo) .(..)&#x & ♦ 1 4 | 0 4 0 3 3 | 0 0 3 3 1 0 3 | 0 0 1 0 0 3 0 0 0 1 0 | * * * * * * 64 * * * * | 0 0 0 1 0 0 1 1 0 | 0 1 1 1 .(..) .(..) .(..) o(xo) .(..) o(ox)&#x ♦ 1 4 | 0 4 0 2 4 | 0 0 2 4 0 0 4 | 0 0 0 0 0 4 0 0 0 0 1 | * * * * * * * 48 * * * | 0 0 0 0 1 1 0 1 0 | 1 0 1 1 .(..) .(xo) .(ox) .(xo) .(..) .(ox)&#zx ♦ 0 8 | 0 0 4 4 16 | 0 0 0 0 0 16 16 | 0 0 0 0 0 0 0 4 8 0 4 | * * * * * * * * 6 * * | 0 0 0 0 0 2 0 0 1 | 1 0 0 2 .(..) .(xo) .(..) .(..) .(oo)3.(ox)&#x & ♦ 0 5 | 0 0 1 3 6 | 0 0 0 0 1 3 6 | 0 0 0 0 0 0 0 0 3 2 0 | * * * * * * * * * 16 * | 0 0 0 0 0 0 2 0 1 | 0 1 0 2 .(..) .(..) .(..) .(xo)3.(oo)3.(ox)&#x ♦ 0 8 | 0 0 0 12 12 | 0 0 0 0 8 0 24 | 0 0 0 0 0 0 2 0 0 8 6 | * * * * * * * * * * 4 | 0 0 0 0 0 0 0 2 1 | 0 0 1 2 -----------------------------------------+------+--------------+----------------------+---------------------------------+-------------------------------+-------------------------+--------- x(o.) .(..) .(..) o(x.)3o(o.)3o(o.)&#x & ♦ 2 4 | 1 8 0 6 0 | 4 0 12 0 4 0 0 | 0 6 8 0 0 0 1 0 0 0 0 | 4 2 0 0 0 0 0 0 0 0 0 | 4 * * * * * * * * | 0 0 2 0 x(oo) o(xo) o(ox) .(..) .(..) .(..)&#x ♦ 2 4 | 1 8 2 0 4 | 4 4 0 8 0 4 0 | 2 0 0 4 8 0 0 1 0 0 0 | 0 0 4 0 2 0 0 0 0 0 0 | * 12 * * * * * * * | 2 0 0 0 x(oo) o(xo) .(..) .(..) .(..) o(ox)&#x & ♦ 2 4 | 1 8 1 1 4 | 4 2 2 8 0 2 2 | 1 1 0 4 4 4 0 0 1 0 0 | 0 0 2 2 0 2 0 0 0 0 0 | * * 48 * * * * * * | 1 1 0 0 x(oo) .(..) .(..) o(xo)3o(oo) .(..)&#x & ♦ 2 4 | 1 8 0 3 3 | 4 0 6 6 1 0 3 | 0 3 2 3 0 6 0 0 0 1 0 | 1 0 0 3 0 0 2 0 0 0 0 | * * * 32 * * * * * | 0 1 1 0 x(oo) .(..) .(..) o(xo) .(..) o(ox)&#x ♦ 2 4 | 1 8 0 2 4 | 4 0 4 8 0 0 4 | 0 2 0 4 0 8 0 0 0 0 1 | 0 0 0 4 0 0 0 2 0 0 0 | * * * * 24 * * * * | 1 0 1 0 .(..) o(xo) o(ox) o(xo) .(..) o(ox)&#x ♦ 1 8 | 0 8 4 4 16 | 0 4 4 16 0 16 16 | 0 0 0 0 16 16 0 4 8 0 4 | 0 0 0 0 4 8 0 4 1 0 0 | * * * * * 12 * * * | 1 0 0 1 .(..) o(xo) .(..) .(..) o(oo)3o(ox)&#x & ♦ 1 5 | 0 5 1 3 6 | 0 1 3 6 1 3 6 | 0 0 1 0 3 6 0 0 3 2 0 | 0 0 0 0 0 3 2 0 0 1 0 | * * * * * * 32 * * | 0 1 0 1 .(..) .(..) .(..) o(xo)3o(oo)3o(ox)&#x ♦ 1 8 | 0 8 0 12 12 | 0 0 12 12 8 0 24 | 0 0 8 0 0 24 2 0 0 8 6 | 0 2 0 0 0 0 8 6 0 0 1 | * * * * * * * 8 * | 0 0 1 1 .(..) .(xo) .(ox) .(xo)3.(oo)3.(ox)&#zx ♦ 0 16 | 0 0 8 24 48 | 0 0 0 0 16 48 96 | 0 0 0 0 0 0 4 12 48 32 24 | 0 0 0 0 0 0 0 0 6 16 4 | * * * * * * * * 1 | 0 0 0 2 -----------------------------------------+------+--------------+----------------------+---------------------------------+-------------------------------+-------------------------+--------- x(oo) o(xo) o(ox) o(xo) .(..) o(ox)&#x ♦ 2 8 | 1 16 4 4 16 | 8 8 8 32 0 16 16 | 4 4 0 16 32 32 0 4 8 0 4 | 0 0 16 16 8 16 0 8 1 0 0 | 0 4 8 0 4 2 0 0 0 | 6 * * * x(oo) o(xo) .(..) .(..) o(oo)3o(ox)&#x & ♦ 2 5 | 1 10 1 3 6 | 5 2 6 12 1 3 6 | 1 3 2 6 6 12 0 0 3 2 0 | 1 0 3 6 0 6 4 0 0 1 0 | 0 0 3 2 0 0 2 0 0 | * 16 * * x(oo) .(..) .(..) o(xo)3o(oo)3o(ox)&#x ♦ 2 8 | 1 16 0 12 12 | 8 0 24 24 8 0 24 | 0 12 16 12 0 48 2 0 0 8 6 | 8 4 0 24 0 0 16 12 0 0 1 | 2 0 0 8 6 0 0 2 0 | * * 4 * .(..) o(xo) o(ox) o(xo)3o(oo)3o(ox)&#x ♦ 1 16 | 0 16 8 24 48 | 0 8 24 48 16 48 96 | 0 0 16 0 48 96 4 12 48 32 24 | 0 4 0 0 12 48 32 24 6 16 4 | 0 0 0 0 0 6 16 4 1 | * * * 2
| © 2004-2025 | top of page |