Acronym | pattin | ||||||||||||||||||||||||
Name |
prismatotruncated penteract, runcitruncated penteract | ||||||||||||||||||||||||
Circumradius | sqrt[25+12 sqrt(2)]/2 = 3.239235 | ||||||||||||||||||||||||
Vertex figure |
| ||||||||||||||||||||||||
Lace city in approx. ASCII-art |
| ||||||||||||||||||||||||
Coordinates | (1+2 sqrt(2), 1+2 sqrt(2), 1+sqrt(2), 1+sqrt(2), 1)/2 & all permutations, all changes of sign | ||||||||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||||||||
Face vector | 960, 3360, 3760, 1560, 202 | ||||||||||||||||||||||||
Confer |
| ||||||||||||||||||||||||
External links |
![]() ![]() |
As abstract polyteron pattin is isomorph to quiptin, thereby replacing octagons by octagrams, resp. op by stop and tic by quith, resp. todip by tistodip and proh by quiproh.
Incidence matrix according to Dynkin symbol
o3x3o3x4x . . . . . | 960 | 4 2 1 | 2 2 4 4 1 2 | 1 2 2 2 2 4 1 | 1 1 2 2 ----------+-----+--------------+-------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * | 1 1 1 1 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . . x . | 2 | * 960 * | 0 0 2 0 1 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * 480 | 0 0 0 4 0 2 | 0 0 2 0 2 4 1 | 0 1 2 2 ----------+-----+--------------+-------------------------+----------------------------+------------ o3x . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3o . . | 3 | 3 0 0 | * 640 * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 2 0 | * * 960 * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 2 | * * * 960 * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . o3x . | 3 | 0 3 0 | * * * * 320 * | 0 0 0 2 0 0 1 | 1 0 0 2 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 ----------+-----+--------------+-------------------------+----------------------------+------------ o3x3o . . ♦ 6 | 12 0 0 | 4 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3x . x . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * 320 * * * * * | 1 0 1 0 o3x . . x ♦ 6 | 6 0 3 | 2 0 0 3 0 0 | * * 320 * * * * | 0 1 1 0 . x3o3x . ♦ 12 | 12 12 0 | 0 4 6 0 4 0 | * * * 160 * * * | 1 0 0 1 . x3o . x ♦ 6 | 6 0 3 | 0 2 0 3 0 0 | * * * * 320 * * | 0 1 0 1 . x . x4x ♦ 16 | 8 8 8 | 0 0 4 4 2 2 | * * * * * 240 * | 0 0 1 1 . . o3x4x ♦ 24 | 0 24 12 | 0 0 0 0 8 6 | * * * * * * 40 | 0 0 0 2 ----------+-----+--------------+-------------------------+----------------------------+------------ o3x3o3x . ♦ 30 | 60 30 0 | 20 20 30 0 10 0 | 5 10 0 5 0 0 0 | 32 * * * o3x3o . x ♦ 12 | 24 0 6 | 8 8 0 12 0 0 | 2 0 4 0 4 0 0 | * 80 * * o3x . x4x ♦ 24 | 24 12 12 | 8 0 12 12 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3o3x4x ♦ 192 | 192 192 96 | 0 64 96 96 64 48 | 0 0 0 16 32 24 8 | * * * 10 snubbed forms: o3x3o3x4s
o3x3/2o3/2x4x . . . . . | 960 | 4 2 1 | 2 2 4 4 1 2 | 1 2 2 2 2 4 1 | 1 1 2 2 --------------+-----+--------------+-------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * | 1 1 1 1 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . . x . | 2 | * 960 * | 0 0 2 0 1 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * 480 | 0 0 0 4 0 2 | 0 0 2 0 2 4 1 | 0 1 2 2 --------------+-----+--------------+-------------------------+----------------------------+------------ o3x . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3/2o . . | 3 | 3 0 0 | * 640 * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 2 0 | * * 960 * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 2 | * * * 960 * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . o3/2x . | 3 | 0 3 0 | * * * * 320 * | 0 0 0 2 0 0 1 | 1 0 0 2 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 --------------+-----+--------------+-------------------------+----------------------------+------------ o3x3/2o . . ♦ 6 | 12 0 0 | 4 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3x . x . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * 320 * * * * * | 1 0 1 0 o3x . . x ♦ 6 | 6 0 3 | 2 0 0 3 0 0 | * * 320 * * * * | 0 1 1 0 . x3/2o3/2x . ♦ 12 | 12 12 0 | 0 4 6 0 4 0 | * * * 160 * * * | 1 0 0 1 . x3/2o . x ♦ 6 | 6 0 3 | 0 2 0 3 0 0 | * * * * 320 * * | 0 1 0 1 . x . x4x ♦ 16 | 8 8 8 | 0 0 4 4 2 2 | * * * * * 240 * | 0 0 1 1 . . o3/2x4x ♦ 24 | 0 24 12 | 0 0 0 0 8 6 | * * * * * * 40 | 0 0 0 2 --------------+-----+--------------+-------------------------+----------------------------+------------ o3x3/2o3/2x . ♦ 30 | 60 30 0 | 20 20 30 0 10 0 | 5 10 0 5 0 0 0 | 32 * * * o3x3/2o . x ♦ 12 | 24 0 6 | 8 8 0 12 0 0 | 2 0 4 0 4 0 0 | * 80 * * o3x . x4x ♦ 24 | 24 12 12 | 8 0 12 12 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3/2o3/2x4x ♦ 192 | 192 192 96 | 0 64 96 96 64 48 | 0 0 0 16 32 24 8 | * * * 10
o3/2x3o3x4x . . . . . | 960 | 4 2 1 | 2 2 4 4 1 2 | 1 2 2 2 2 4 1 | 1 1 2 2 ------------+-----+--------------+-------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * | 1 1 1 1 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . . x . | 2 | * 960 * | 0 0 2 0 1 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * 480 | 0 0 0 4 0 2 | 0 0 2 0 2 4 1 | 0 1 2 2 ------------+-----+--------------+-------------------------+----------------------------+------------ o3/2x . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3o . . | 3 | 3 0 0 | * 640 * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 2 0 | * * 960 * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 2 | * * * 960 * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . o3x . | 3 | 0 3 0 | * * * * 320 * | 0 0 0 2 0 0 1 | 1 0 0 2 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 ------------+-----+--------------+-------------------------+----------------------------+------------ o3/2x3o . . ♦ 6 | 12 0 0 | 4 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3/2x . x . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * 320 * * * * * | 1 0 1 0 o3/2x . . x ♦ 6 | 6 0 3 | 2 0 0 3 0 0 | * * 320 * * * * | 0 1 1 0 . x3o3x . ♦ 12 | 12 12 0 | 0 4 6 0 4 0 | * * * 160 * * * | 1 0 0 1 . x3o . x ♦ 6 | 6 0 3 | 0 2 0 3 0 0 | * * * * 320 * * | 0 1 0 1 . x . x4x ♦ 16 | 8 8 8 | 0 0 4 4 2 2 | * * * * * 240 * | 0 0 1 1 . . o3x4x ♦ 24 | 0 24 12 | 0 0 0 0 8 6 | * * * * * * 40 | 0 0 0 2 ------------+-----+--------------+-------------------------+----------------------------+------------ o3/2x3o3x . ♦ 30 | 60 30 0 | 20 20 30 0 10 0 | 5 10 0 5 0 0 0 | 32 * * * o3/2x3o . x ♦ 12 | 24 0 6 | 8 8 0 12 0 0 | 2 0 4 0 4 0 0 | * 80 * * o3/2x . x4x ♦ 24 | 24 12 12 | 8 0 12 12 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3o3x4x ♦ 192 | 192 192 96 | 0 64 96 96 64 48 | 0 0 0 16 32 24 8 | * * * 10
o3/2x3/2o3/2x4x . . . . . | 960 | 4 2 1 | 2 2 4 4 1 2 | 1 2 2 2 2 4 1 | 1 1 2 2 ----------------+-----+--------------+-------------------------+----------------------------+------------ . x . . . | 2 | 1920 * * | 1 1 1 1 0 0 | 1 1 1 1 1 1 0 | 1 1 1 1 . . . x . | 2 | * 960 * | 0 0 2 0 1 1 | 0 1 0 2 0 2 1 | 1 0 1 2 . . . . x | 2 | * * 480 | 0 0 0 4 0 2 | 0 0 2 0 2 4 1 | 0 1 2 2 ----------------+-----+--------------+-------------------------+----------------------------+------------ o3/2x . . . | 3 | 3 0 0 | 640 * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 . x3/2o . . | 3 | 3 0 0 | * 640 * * * * | 1 0 0 1 1 0 0 | 1 1 0 1 . x . x . | 4 | 2 2 0 | * * 960 * * * | 0 1 0 1 0 1 0 | 1 0 1 1 . x . . x | 4 | 2 0 2 | * * * 960 * * | 0 0 1 0 1 1 0 | 0 1 1 1 . . o3/2x . | 3 | 0 3 0 | * * * * 320 * | 0 0 0 2 0 0 1 | 1 0 0 2 . . . x4x | 8 | 0 4 4 | * * * * * 240 | 0 0 0 0 0 2 1 | 0 0 1 2 ----------------+-----+--------------+-------------------------+----------------------------+------------ o3/2x3/2o . . ♦ 6 | 12 0 0 | 4 4 0 0 0 0 | 160 * * * * * * | 1 1 0 0 o3/2x . x . ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * 320 * * * * * | 1 0 1 0 o3/2x . . x ♦ 6 | 6 0 3 | 2 0 0 3 0 0 | * * 320 * * * * | 0 1 1 0 . x3/2o3/2x . ♦ 12 | 12 12 0 | 0 4 6 0 4 0 | * * * 160 * * * | 1 0 0 1 . x3/2o . x ♦ 6 | 6 0 3 | 0 2 0 3 0 0 | * * * * 320 * * | 0 1 0 1 . x . x4x ♦ 16 | 8 8 8 | 0 0 4 4 2 2 | * * * * * 240 * | 0 0 1 1 . . o3/2x4x ♦ 24 | 0 24 12 | 0 0 0 0 8 6 | * * * * * * 40 | 0 0 0 2 ----------------+-----+--------------+-------------------------+----------------------------+------------ o3/2x3/2o3/2x . ♦ 30 | 60 30 0 | 20 20 30 0 10 0 | 5 10 0 5 0 0 0 | 32 * * * o3/2x3/2o . x ♦ 12 | 24 0 6 | 8 8 0 12 0 0 | 2 0 4 0 4 0 0 | * 80 * * o3/2x . x4x ♦ 24 | 24 12 12 | 8 0 12 12 0 3 | 0 4 4 0 0 3 0 | * * 80 * . x3/2o3/2x4x ♦ 192 | 192 192 96 | 0 64 96 96 64 48 | 0 0 0 16 32 24 8 | * * * 10
xoooox3oxxxxo3xxooxx4xxwwxx&#xt → height(1,2) = height(2,3) = height(4,5) = height(5,6) = 1/sqrt(2) = 0.707107 height(3,4) = 1 (proh || pseudo grit || pseudo (x,w)-srit || (x,w)-srit || pseudo grit || proh) ...
© 2004-2025 | top of page |