Acronym sidpixhi
Name small disprismatohexacosihecatonicosachoron,
runcinated hecatonicosachoron,
runcinated hexacosachoron
Cross sections
` ©`
Vertex figure
` ©`
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: doe pip saddid srid tet trip sidpixhi 120 720 0 0 600 1200 sixhihy 120 0 120 0 600 0 six fipady 120 0 0 120 0 1200
& others)
Dihedral angles
• at {3} between tet and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
• at {4} between pip and trip:   arccos(-sqrt[(10+2 sqrt(5))/15]) = 169.187683°
• at {5} between doe and pip:   162°
Confer
variations:
x3o3o5v
segmentochora:
doasrid
other CRFs:
idsid pixhi   bidsid pixhi   42-diminished sidpixhi
decompositions:
rahi || sidpixhi   tex || sidpixhi
External

As abstract polytope sidpixhi is isomorphic to quidpixhi, thereby replacing the pentagons by pentagrams, resp. replacing doe by gissid and pip by stip.

Note that sidpixhi can be thought of as the external blend of 1 tex + 600 tetatuts + 1200 tricufs + 720 peppyps + 120 ikadoes. This decomposition is described as the degenerate segmentoteron xx3xo3oo5ox&#x. – Alternatively it can be decomposed into 1 rahi + 600 hexes + 1200 trippies + 720 pafs + 120 doaids according to ox3oo3xo5ox&#x.

Incidence matrix according to Dynkin symbol

```x3o3o5x

. . . . | 2400 |    3    3 |    3    6    3 |   1    3   3   1
--------+------+-----------+----------------+-----------------
x . . . |    2 | 3600    * |    2    2    0 |   1    2   1   0
. . . x |    2 |    * 3600 |    0    2    2 |   0    1   2   1
--------+------+-----------+----------------+-----------------
x3o . . |    3 |    3    0 | 2400    *    * |   1    1   0   0
x . . x |    4 |    2    2 |    * 3600    * |   0    1   1   0
. . o5x |    5 |    0    5 |    *    * 1440 |   0    0   1   1
--------+------+-----------+----------------+-----------------
x3o3o . ♦    4 |    6    0 |    4    0    0 | 600    *   *   *
x3o . x ♦    6 |    6    3 |    2    3    0 |   * 1200   *   *
x . o5x ♦   10 |    5   10 |    0    5    2 |   *    * 720   *
. o3o5x ♦   20 |    0   30 |    0    0   12 |   *    *   * 120

snubbed forms: β3o3o5x, x3o3o5β, β3o3o5β
```

```x3o3/2o5/4x

. .   .   . | 2400 |    3    3 |    3    6    3 |   1    3   3   1
------------+------+-----------+----------------+-----------------
x .   .   . |    2 | 3600    * |    2    2    0 |   1    2   1   0
. .   .   x |    2 |    * 3600 |    0    2    2 |   0    1   2   1
------------+------+-----------+----------------+-----------------
x3o   .   . |    3 |    3    0 | 2400    *    * |   1    1   0   0
x .   .   x |    4 |    2    2 |    * 3600    * |   0    1   1   0
. .   o5/4x |    5 |    0    5 |    *    * 1440 |   0    0   1   1
------------+------+-----------+----------------+-----------------
x3o3/2o   . ♦    4 |    6    0 |    4    0    0 | 600    *   *   *
x3o   .   x ♦    6 |    6    3 |    2    3    0 |   * 1200   *   *
x .   o5/4x ♦   10 |    5   10 |    0    5    2 |   *    * 720   *
. o3/2o5/4x ♦   20 |    0   30 |    0    0   12 |   *    *   * 120
```

```x3/2o3o5/4x

.   . .   . | 2400 |    3    3 |    3    6    3 |   1    3   3   1
------------+------+-----------+----------------+-----------------
x   . .   . |    2 | 3600    * |    2    2    0 |   1    2   1   0
.   . .   x |    2 |    * 3600 |    0    2    2 |   0    1   2   1
------------+------+-----------+----------------+-----------------
x3/2o .   . |    3 |    3    0 | 2400    *    * |   1    1   0   0
x   . .   x |    4 |    2    2 |    * 3600    * |   0    1   1   0
.   . o5/4x |    5 |    0    5 |    *    * 1440 |   0    0   1   1
------------+------+-----------+----------------+-----------------
x3/2o3o   . ♦    4 |    6    0 |    4    0    0 | 600    *   *   *
x3/2o .   x ♦    6 |    6    3 |    2    3    0 |   * 1200   *   *
x   . o5/4x ♦   10 |    5   10 |    0    5    2 |   *    * 720   *
.   o3o5/4x ♦   20 |    0   30 |    0    0   12 |   *    *   * 120
```

```x3/2o3/2o5x

.   .   . . | 2400 |    3    3 |    3    6    3 |   1    3   3   1
------------+------+-----------+----------------+-----------------
x   .   . . |    2 | 3600    * |    2    2    0 |   1    2   1   0
.   .   . x |    2 |    * 3600 |    0    2    2 |   0    1   2   1
------------+------+-----------+----------------+-----------------
x3/2o   . . |    3 |    3    0 | 2400    *    * |   1    1   0   0
x   .   . x |    4 |    2    2 |    * 3600    * |   0    1   1   0
.   .   o5x |    5 |    0    5 |    *    * 1440 |   0    0   1   1
------------+------+-----------+----------------+-----------------
x3/2o3/2o . ♦    4 |    6    0 |    4    0    0 | 600    *   *   *
x3/2o   . x ♦    6 |    6    3 |    2    3    0 |   * 1200   *   *
x   .   o5x ♦   10 |    5   10 |    0    5    2 |   *    * 720   *
.   o3/2o5x ♦   20 |    0   30 |    0    0   12 |   *    *   * 120
```