Acronym traquitco
Name triangle - quasitruncated-cuboctahedron duoprism
Circumradius sqrt[(43-18 sqrt(2))/12] = 1.209137
Face vector 144, 360, 342, 153, 29
Confer
general polytopal classes:
Wythoffian polytera   segmentotera  

As abstract polytope traquitco is isomorphic to tragirco, thereby replacing octagrams by octagons, resp. replacing stop by op and quitco by girco, resp. replacing tistodip by todip and quitcope by gircope.


Incidence matrix according to Dynkin symbol

x3o x3x4/3x

. . . .   . | 144 |   2  1  1  1 |  1  2  2  2  1  1  1 |  1  1  1  2  2  2 1 | 1  1 1 2
------------+-----+--------------+----------------------+---------------------+---------
x . . .   . |   2 | 144  *  *  * |  1  1  1  1  0  0  0 |  1  1  1  1  1  1 0 | 1  1 1 1
. . x .   . |   2 |   * 72  *  * |  0  2  0  0  1  1  0 |  1  0  0  2  2  0 1 | 1  1 0 2
. . . x   . |   2 |   *  * 72  * |  0  0  2  0  1  0  1 |  0  1  0  2  0  2 1 | 1  0 1 2
. . . .   x |   2 |   *  *  * 72 |  0  0  0  2  0  1  1 |  0  0  1  0  2  2 1 | 0  1 1 2
------------+-----+--------------+----------------------+---------------------+---------
x3o . .   . |   3 |   3  0  0  0 | 48  *  *  *  *  *  * |  1  1  1  0  0  0 0 | 1  1 1 0
x . x .   . |   4 |   2  2  0  0 |  * 72  *  *  *  *  * |  1  0  0  1  1  0 0 | 1  1 0 1
x . . x   . |   4 |   2  0  2  0 |  *  * 72  *  *  *  * |  0  1  0  1  0  1 0 | 1  0 1 1
x . . .   x |   4 |   2  0  0  2 |  *  *  * 72  *  *  * |  0  0  1  0  1  1 0 | 0  1 1 1
. . x3x   . |   6 |   0  3  3  0 |  *  *  *  * 24  *  * |  0  0  0  2  0  0 1 | 1  0 0 2
. . x .   x |   4 |   0  2  0  2 |  *  *  *  *  * 36  * |  0  0  0  0  2  0 1 | 0  1 0 2
. . . x4/3x |   8 |   0  0  4  4 |  *  *  *  *  *  * 18 |  0  0  0  0  0  2 1 | 0  0 1 2
------------+-----+--------------+----------------------+---------------------+---------
x3o x .   .    6 |   6  3  0  0 |  2  3  0  0  0  0  0 | 24  *  *  *  *  * * | 1  1 0 0
x3o . x   .    6 |   6  0  3  0 |  2  0  3  0  0  0  0 |  * 24  *  *  *  * * | 1  0 1 0
x3o . .   x    6 |   6  0  0  3 |  2  0  0  3  0  0  0 |  *  * 24  *  *  * * | 0  1 1 0
x . x3x   .   12 |   6  6  6  0 |  0  3  3  0  2  0  0 |  *  *  * 24  *  * * | 1  0 0 1
x . x .   x    8 |   4  4  0  4 |  0  2  0  2  0  2  0 |  *  *  *  * 36  * * | 0  1 0 1
x . . x4/3x   16 |   8  0  8  8 |  0  0  4  4  0  0  2 |  *  *  *  *  * 18 * | 0  0 1 1
. . x3x4/3x   48 |   0 24 24 24 |  0  0  0  0  8 12  6 |  *  *  *  *  *  * 3 | 0  0 0 2
------------+-----+--------------+----------------------+---------------------+---------
x3o x3x   .   18 |  18  9  9  0 |  6  9  9  0  3  0  0 |  3  3  0  3  0  0 0 | 8  * * *
x3o x .   x   12 |  12  6  0  6 |  4  6  0  6  0  3  0 |  2  0  2  0  3  0 0 | * 12 * *
x3o . x4/3x   24 |  24  0 12 12 |  8  0 12 12  0  0  3 |  0  4  4  0  0  3 0 | *  * 6 *
x . x3x4/3x   96 |  48 48 48 48 |  0 24 24 24 16 24 12 |  0  0  0  8 12  6 2 | *  * * 3

© 2004-2025
top of page