Acronym | cagorx (old: gacorx) |
Name |
celligreatorhombated hexeract, (old: great cellirhombated hexeract), stericantitruncated dodecapeton |
Circumradius | sqrt[(30+11 sqrt(2))/2] = 4.772649 |
Coordinates | (1+3 sqrt(2), 1+3 sqrt(2), 1+2 sqrt(2), 1+2 sqrt(2), 1+sqrt(2), 1)/2 & all permutations, all changes of sign |
Face vector | 11520, 46080, 64800, 38880, 9308, 668 |
Confer |
|
External links |
![]() ![]() |
As abstract polytope cagorx is isomorphic to quacagorx, thereby replacing octagons by octagrams, resp. op by stop and girco by quitco, resp. todip by tistodip, gircope by quitcope, and grit by gaqrit, resp. owoct by stowoct, tragirco by traquitco, and cogrin by quacgarn.
Incidence matrix according to Dynkin symbol
o3x3o3x3x4x . . . . . . | 11520 | 4 2 1 1 | 2 2 4 4 4 1 2 2 1 | 1 2 2 2 2 2 2 4 4 4 1 1 2 | 1 1 1 2 2 2 2 2 2 4 1 | 1 1 1 2 2 ------------+-------+-----------------------+-------------------------------------------------+----------------------------------------------------------------+----------------------------------------------+------------------ . x . . . . | 2 | 23040 * * * | 1 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 0 0 0 | 1 1 1 1 1 1 1 1 1 1 0 | 1 1 1 1 1 . . . x . . | 2 | * 11520 * * | 0 0 2 0 0 1 1 1 0 | 0 2 0 0 1 0 0 2 2 0 1 1 1 | 1 0 0 1 1 0 2 2 0 2 1 | 1 1 0 1 2 . . . . x . | 2 | * * 5760 * | 0 0 0 4 0 0 2 0 1 | 0 0 2 0 0 2 0 4 0 4 1 0 2 | 0 1 0 2 0 2 2 0 2 4 1 | 1 0 1 2 2 . . . . . x | 2 | * * * 5760 | 0 0 0 0 4 0 0 2 1 | 0 0 0 2 0 0 2 0 4 4 0 1 2 | 0 0 1 0 2 2 0 2 2 4 1 | 0 1 1 2 2 ------------+-------+-----------------------+-------------------------------------------------+----------------------------------------------------------------+----------------------------------------------+------------------ o3x . . . . | 3 | 3 0 0 0 | 7680 * * * * * * * * | 1 1 1 1 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 0 0 0 0 0 | 1 1 1 1 0 . x3o . . . | 3 | 3 0 0 0 | * 7680 * * * * * * * | 1 0 0 0 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0 1 1 1 0 0 | 1 1 1 0 1 . x . x . . | 4 | 2 2 0 0 | * * 11520 * * * * * * | 0 1 0 0 1 0 0 1 1 0 0 0 0 | 1 0 0 1 1 0 1 1 0 1 0 | 1 1 0 1 1 . x . . x . | 4 | 2 0 2 0 | * * * 11520 * * * * * | 0 0 1 0 0 1 0 1 0 1 0 0 0 | 0 1 0 1 0 1 1 0 1 1 0 | 1 0 1 1 1 . x . . . x | 4 | 2 0 0 2 | * * * * 11520 * * * * | 0 0 0 1 0 0 1 0 1 1 0 0 0 | 0 0 1 0 1 1 0 1 1 1 0 | 0 1 1 1 1 . . o3x . . | 3 | 0 3 0 0 | * * * * * 3840 * * * | 0 0 0 0 2 0 0 0 0 0 1 1 0 | 1 0 0 0 0 0 2 2 0 0 1 | 1 1 0 0 2 . . . x3x . | 6 | 0 3 3 0 | * * * * * * 3840 * * | 0 0 0 0 0 0 0 2 0 0 1 0 1 | 0 0 0 1 0 0 2 0 0 2 1 | 1 0 0 1 2 . . . x . x | 4 | 0 2 0 2 | * * * * * * * 5760 * | 0 0 0 0 0 0 0 0 2 0 0 1 1 | 0 0 0 0 1 0 0 2 0 2 1 | 0 1 0 1 2 . . . . x4x | 8 | 0 0 4 4 | * * * * * * * * 1440 | 0 0 0 0 0 0 0 0 0 4 0 0 2 | 0 0 0 0 0 2 0 0 2 4 1 | 0 0 1 2 2 ------------+-------+-----------------------+-------------------------------------------------+----------------------------------------------------------------+----------------------------------------------+------------------ o3x3o . . . ♦ 6 | 12 0 0 0 | 4 4 0 0 0 0 0 0 0 | 1920 * * * * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 | 1 1 1 0 0 o3x . x . . ♦ 6 | 6 3 0 0 | 2 0 3 0 0 0 0 0 0 | * 3840 * * * * * * * * * * * | 1 0 0 1 1 0 0 0 0 0 0 | 1 1 0 1 0 o3x . . x . ♦ 6 | 6 0 3 0 | 2 0 0 3 0 0 0 0 0 | * * 3840 * * * * * * * * * * | 0 1 0 1 0 1 0 0 0 0 0 | 1 0 1 1 0 o3x . . . x ♦ 6 | 6 0 0 3 | 2 0 0 0 3 0 0 0 0 | * * * 3840 * * * * * * * * * | 0 0 1 0 1 1 0 0 0 0 0 | 0 1 1 1 0 . x3o3x . . ♦ 12 | 12 12 0 0 | 0 4 6 0 0 4 0 0 0 | * * * * 1920 * * * * * * * * | 1 0 0 0 0 0 1 1 0 0 0 | 1 1 0 0 1 . x3o . x . ♦ 6 | 6 0 3 0 | 0 2 0 3 0 0 0 0 0 | * * * * * 3840 * * * * * * * | 0 1 0 0 0 0 1 0 1 0 0 | 1 0 1 0 1 . x3o . . x ♦ 6 | 6 0 0 3 | 0 2 0 0 3 0 0 0 0 | * * * * * * 3840 * * * * * * | 0 0 1 0 0 0 0 1 1 0 0 | 0 1 1 0 1 . x . x3x . ♦ 12 | 6 6 6 0 | 0 0 3 3 0 0 2 0 0 | * * * * * * * 3840 * * * * * | 0 0 0 1 0 0 1 0 0 1 0 | 1 0 0 1 1 . x . x . x ♦ 8 | 4 4 0 4 | 0 0 2 0 2 0 0 2 0 | * * * * * * * * 5760 * * * * | 0 0 0 0 1 0 0 1 0 1 0 | 0 1 0 1 1 . x . . x4x ♦ 16 | 8 0 8 8 | 0 0 0 4 4 0 0 0 2 | * * * * * * * * * 2880 * * * | 0 0 0 0 0 1 0 0 1 1 0 | 0 0 1 1 1 . . o3x3x . ♦ 12 | 0 12 6 0 | 0 0 0 0 0 4 4 0 0 | * * * * * * * * * * 960 * * | 0 0 0 0 0 0 2 0 0 0 1 | 1 0 0 0 2 . . o3x . x ♦ 6 | 0 6 0 3 | 0 0 0 0 0 2 0 3 0 | * * * * * * * * * * * 1920 * | 0 0 0 0 0 0 0 2 0 0 1 | 0 1 0 0 2 . . . x3x4x ♦ 48 | 0 24 24 24 | 0 0 0 0 0 0 8 12 6 | * * * * * * * * * * * * 480 | 0 0 0 0 0 0 0 0 0 2 1 | 0 0 0 1 2 ------------+-------+-----------------------+-------------------------------------------------+----------------------------------------------------------------+----------------------------------------------+------------------ o3x3o3x . . ♦ 30 | 60 30 0 0 | 20 20 30 0 0 10 0 0 0 | 5 10 0 0 5 0 0 0 0 0 0 0 0 | 384 * * * * * * * * * * | 1 1 0 0 0 o3x3o . x . ♦ 12 | 24 0 6 0 | 8 8 0 12 0 0 0 0 0 | 2 0 4 0 0 4 0 0 0 0 0 0 0 | * 960 * * * * * * * * * | 1 0 1 0 0 o3x3o . . x ♦ 12 | 24 0 0 6 | 8 8 0 0 12 0 0 0 0 | 2 0 0 4 0 0 4 0 0 0 0 0 0 | * * 960 * * * * * * * * | 0 1 1 0 0 o3x . x3x . ♦ 18 | 18 9 9 0 | 6 0 9 9 0 0 3 0 0 | 0 3 3 0 0 0 0 3 0 0 0 0 0 | * * * 1280 * * * * * * * | 1 0 0 1 0 o3x . x . x ♦ 12 | 12 6 0 6 | 4 0 6 0 6 0 0 3 0 | 0 2 0 2 0 0 0 0 3 0 0 0 0 | * * * * 1920 * * * * * * | 0 1 0 1 0 o3x . . x4x ♦ 24 | 24 0 12 12 | 8 0 0 12 12 0 0 0 3 | 0 0 4 4 0 0 0 0 0 3 0 0 0 | * * * * * 960 * * * * * | 0 0 1 1 0 . x3o3x3x . ♦ 60 | 60 60 30 0 | 0 20 30 30 0 20 20 0 0 | 0 0 0 0 5 10 0 10 0 0 5 0 0 | * * * * * * 384 * * * * | 1 0 0 0 1 . x3o3x . x ♦ 24 | 24 24 0 12 | 0 8 12 0 12 8 0 12 0 | 0 0 0 0 2 0 4 0 6 0 0 4 0 | * * * * * * * 960 * * * | 0 1 0 0 1 . x3o . x4x ♦ 24 | 24 0 12 12 | 0 8 0 12 12 0 0 0 3 | 0 0 0 0 0 4 4 0 0 3 0 0 0 | * * * * * * * * 960 * * | 0 0 1 0 1 . x . x3x4x ♦ 96 | 48 48 48 48 | 0 0 24 24 24 0 16 24 12 | 0 0 0 0 0 0 0 8 12 6 0 0 2 | * * * * * * * * * 480 * | 0 0 0 1 1 . . o3x3x4x ♦ 192 | 0 192 96 96 | 0 0 0 0 0 64 64 96 24 | 0 0 0 0 0 0 0 0 0 0 16 32 8 | * * * * * * * * * * 60 | 0 0 0 0 2 ------------+-------+-----------------------+-------------------------------------------------+----------------------------------------------------------------+----------------------------------------------+------------------ o3x3o3x3x . ♦ 180 | 360 180 90 0 | 120 120 180 180 0 60 60 0 0 | 30 60 60 0 30 60 0 60 0 0 15 0 0 | 6 15 0 20 0 0 6 0 0 0 0 | 64 * * * * o3x3o3x . x ♦ 60 | 120 60 0 30 | 40 40 60 0 60 20 0 30 0 | 10 20 0 20 10 0 20 0 30 0 0 10 0 | 2 0 5 0 10 0 0 5 0 0 0 | * 192 * * * o3x3o . x4x ♦ 48 | 96 0 24 24 | 32 32 0 48 48 0 0 0 6 | 8 0 16 16 0 16 16 0 0 12 0 0 0 | 0 4 4 0 0 4 0 0 4 0 0 | * * 240 * * o3x . x3x4x ♦ 144 | 144 72 72 72 | 48 0 72 72 72 0 24 36 18 | 0 24 24 24 0 0 0 24 36 18 0 0 3 | 0 0 0 8 12 6 0 0 0 3 0 | * * * 160 * . x3o3x3x4x ♦ 1920 | 1920 1920 960 960 | 0 640 960 960 960 640 640 960 240 | 0 0 0 0 160 320 320 320 480 240 160 320 80 | 0 0 0 0 0 0 32 80 80 40 10 | * * * * 12
© 2004-2025 | top of page |