Acronym prix
Name prismatorhombated hexacosichoron,
runcitruncated hecatonicosachoron
Vertex figure
` ©`
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polychoral members:
 by cells: co dip grid oho tid trip prix 600 720 0 0 120 1200 spixhihy 0 0 120 600 120 1200
& others)
Dihedral angles
• at {3} between co and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
• at {4} between dip and trip:   arccos(-sqrt[(10+2 sqrt(5))/15]) = 169.187683°
• at {4} between co and dip:   arccos(-sqrt[(5+2 sqrt(5))/10]) = 166.717474°
• at {10} between dip and tid:   162°
• at {3} between co and tid:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244°
Confer
Grünbaumian relatives:
2prix
segmentochora:
tidagrid
other CRFs:
idprix
decompositions:
grix || prix
External

As abstract polytope prix is isomorphic to quippirgax, thereby replacing the decagons by decagrams, resp. replacing the tid by quit gissid and the dip by stiddip.

Note that prix can be thought of as the external blend of 1 grix + 600 coatoes + 1200 tricufs + 720 pecupes + 120 tiatids. This decomposition is described as the degenerate segmentoteron xx3xo3xx5ox&#x.

Incidence matrix according to Dynkin symbol

```x3o3x5x

. . . . | 7200 |    2    2    1 |    1    2    2    1    2 |   1    1   2   1
--------+------+----------------+--------------------------+-----------------
x . . . |    2 | 7200    *    * |    1    1    1    0    0 |   1    1   1   0
. . x . |    2 |    * 7200    * |    0    1    0    1    1 |   1    0   1   1
. . . x |    2 |    *    * 3600 |    0    0    2    0    2 |   0    1   2   1
--------+------+----------------+--------------------------+-----------------
x3o . . |    3 |    3    0    0 | 2400    *    *    *    * |   1    1   0   0
x . x . |    4 |    2    2    0 |    * 3600    *    *    * |   1    0   1   0
x . . x |    4 |    2    0    2 |    *    * 3600    *    * |   0    1   1   0
. o3x . |    3 |    0    3    0 |    *    *    * 2400    * |   1    0   0   1
. . x5x |   10 |    0    5    5 |    *    *    *    * 1440 |   0    0   1   1
--------+------+----------------+--------------------------+-----------------
x3o3x . ♦   12 |   12   12    0 |    4    6    0    4    0 | 600    *   *   *
x3o . x ♦    6 |   12    0    6 |    2    0    3    0    0 |   * 1200   *   *
x . x5x ♦   20 |   10   10   10 |    0    5    5    0    2 |   *    * 720   *
. o3x5x ♦   60 |    0   60   30 |    0    0    0   20   12 |   *    *   * 120

snubbed forms: β3o3x5x, x3o3β5x, x3o3x5β, β3o3β5x, β3o3x5β, x3o3β5β, β3o3β5β
```

```x3/2o3/2x5x

.   .   . . | 7200 |    2    2    1 |    1    2    2    1    2 |   1    1   2   1
------------+------+----------------+--------------------------+-----------------
x   .   . . |    2 | 7200    *    * |    1    1    1    0    0 |   1    1   1   0
.   .   x . |    2 |    * 7200    * |    0    1    0    1    1 |   1    0   1   1
.   .   . x |    2 |    *    * 3600 |    0    0    2    0    2 |   0    1   2   1
------------+------+----------------+--------------------------+-----------------
x3/2o   . . |    3 |    3    0    0 | 2400    *    *    *    * |   1    1   0   0
x   .   x . |    4 |    2    2    0 |    * 3600    *    *    * |   1    0   1   0
x   .   . x |    4 |    2    0    2 |    *    * 3600    *    * |   0    1   1   0
.   o3/2x . |    3 |    0    3    0 |    *    *    * 2400    * |   1    0   0   1
.   .   x5x |   10 |    0    5    5 |    *    *    *    * 1440 |   0    0   1   1
------------+------+----------------+--------------------------+-----------------
x3/2o3/2x . ♦   12 |   12   12    0 |    4    6    0    4    0 | 600    *   *   *
x3/2o   . x ♦    6 |   12    0    6 |    2    0    3    0    0 |   * 1200   *   *
x   .   x5x ♦   20 |   10   10   10 |    0    5    5    0    2 |   *    * 720   *
.   o3/2x5x ♦   60 |    0   60   30 |    0    0    0   20   12 |   *    *   * 120
```